People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mattia, Davide
University of Bath
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2021Hydrophobic poly(vinylidene fluoride) / siloxene nanofiltration membranescitations
- 2021Hydrophobic poly(vinylidene fluoride) / siloxene nanofiltration membranescitations
- 2020High flux thin-film nanocomposites with embedded boron nitride nanotubes for nanofiltrationcitations
- 2020High flux thin-film nanocomposites with embedded boron nitride nanotubes for nanofiltrationcitations
- 2019Surface-controlled water flow in nanotube membranescitations
- 2019Surface-controlled water flow in nanotube membranescitations
- 2018Bean seedling growth enhancement using magnetite nanoparticlescitations
- 2014ZnO Nanostructured photo-catalytic films obtained by anodization and its application in the degradation of organic pollutants
- 2010Water transport through nanoporous materialscitations
- 2006Effect of Graphitization on the Wettability and Electrical Conductivity of CVD-Carbon Nanotubes and Films
- 2006Filling carbon nanopipes with functional nanoparticles
- 2005Wetting of HIP AlN-TiB2 ceramic composites by liquid metals and alloys
- 2005Oxidation behaviour of an aluminium nitride-hafnium diboride ceramic composite
Places of action
Organizations | Location | People |
---|
document
Water transport through nanoporous materials
Abstract
<p>We report upon the pressure driven water transport through porous silicon (pSi) and single walled carbon nanotube (SWCNT) membranes. Fabrication of the membranes was monitored by AFM and SEM. Water permeability as high as 16926 mm<sup>3</sup> cm<sup>2</sup> s<sup>1</sup> atm<sup>1</sup> is found for the pSi membrane. The SWCNT membrane is built upon the pSi membrane and a water permeability of 0.02 mm<sup>3</sup> cm<sup>2</sup> s<sup>1</sup> atm<sup>1</sup> is achieved. Performance comparisons to similar CNT membranes are made and future improvements to the system are proposed.</p>