Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mekonen, E. A.

  • Google
  • 1
  • 4
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Analysis of Geometrical Characteristics and Microstructural Evolution of Laser Deposited Titanium Alloy Based Composite Coatingscitations

Places of action

Chart of shared publication
Tadesse, B. A.
1 / 1 shared
Fatoba, O. S.
1 / 15 shared
Jen, T. C.
1 / 17 shared
Akinlabi, Esther Titilayo
1 / 235 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Tadesse, B. A.
  • Fatoba, O. S.
  • Jen, T. C.
  • Akinlabi, Esther Titilayo
OrganizationsLocationPeople

document

Analysis of Geometrical Characteristics and Microstructural Evolution of Laser Deposited Titanium Alloy Based Composite Coatings

  • Tadesse, B. A.
  • Mekonen, E. A.
  • Fatoba, O. S.
  • Jen, T. C.
  • Akinlabi, Esther Titilayo
Abstract

<p>The significance of additive manufacturing has been felt in aerospace industry, but the full implementation of this technique has not been adopted yet due to drawbacks in terms of quality and surface finishing. Quality and surface finishing need to be addressed for the full impact of additive manufacturing to be utilized in many industries, which in turn will impact on the economic aspect of nations. Additive manufacturing reliability must be addressed and research on reliability must be continuous in order to fully utilized all the advantages and benefits of this process in medical and aerospace industries for wide applications. The experiment of quartenary titanium alloy of Ti-Al-Si-Cu was carried out with cladding machine of 3000 Watts (CW) Ytterbium Laser System (YLS-2000-TR). This machine is situated at the National Laser Centre in the Council of Scientific and Industrial Research (NLC-CSIR). The characterization was done using the standardization ASTM E3-11 procedure. Optical images of the samples were taking via the cross-sectional areas of the samples using the standardization procedure ASTM E2228-10 standard with BX51M Olympus microscope. The microstructural evolution was carried out using the TESCAN machine with an X-MAX instrument with ASTM E766-14e1 standardization procedure.The metallurgical bond formed as a result of the melting between the base metal and the reinforcement powders was done by a reduced laser energy input in the range of 27 to 22.5 J/mm2 at samples fabricated at 900 W with increased scanning velocity. While samples fabricated at 1000 W showed decrease in laser energy input between 30 to 25 J/mm2 at increased scanning velocity. Narrow deposit width is achieved at higher scanning velocity due to small amount of reinforcement powders used during the laser material interaction. There is sharp reduction of 20.7% in clad height with 11% of copper to 12.1% in clad height reduction as the weight percent of copper is increased to 12% and further reduction to 10% in clad height as the weight percent of copper is increased to 13% with increased velocity between 1.0 to 1.2 m/min at lower laser power of 900 W. A slight reduction of 14.14 % was shown by specimen Ti-Al-9Si-3Cu. Different result was observed when the specimen was fabricated at 1000 W. The clad height reduction was in the range of 14.14 to 3.85 %.</p>

Topics
  • impedance spectroscopy
  • surface
  • experiment
  • composite
  • copper
  • titanium
  • titanium alloy
  • additive manufacturing
  • Ytterbium