Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Debelle, Laurent

  • Google
  • 2
  • 12
  • 0

University of Reims Champagne-Ardenne

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Exploring damaged elastic arteries by Synchrotron X-ray Micro-CTcitations
  • 2022Mouse arterial wall imaging and analysis from synchrotron X-ray microtomographycitations

Places of action

Chart of shared publication
Almagro, Sébastien
2 / 2 shared
Liang, Xiaowen
2 / 2 shared
Vanalderwiert, Laetitia
1 / 1 shared
Zemzem, Aïcha Ben
2 / 2 shared
Blaise, Sébastien
1 / 1 shared
Romier-Crouzet, Béatrice
1 / 1 shared
Dauchez, Manuel
1 / 1 shared
Weitkamp, Timm
2 / 9 shared
Baud, Stéphanie
1 / 1 shared
Passat, Nicolas
2 / 3 shared
Steffenel, Luiz Angelo
1 / 1 shared
Boisson, Jean-Charles
1 / 1 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Almagro, Sébastien
  • Liang, Xiaowen
  • Vanalderwiert, Laetitia
  • Zemzem, Aïcha Ben
  • Blaise, Sébastien
  • Romier-Crouzet, Béatrice
  • Dauchez, Manuel
  • Weitkamp, Timm
  • Baud, Stéphanie
  • Passat, Nicolas
  • Steffenel, Luiz Angelo
  • Boisson, Jean-Charles
OrganizationsLocationPeople

document

Mouse arterial wall imaging and analysis from synchrotron X-ray microtomography

  • Almagro, Sébastien
  • Liang, Xiaowen
  • Zemzem, Aïcha Ben
  • Weitkamp, Timm
  • Steffenel, Luiz Angelo
  • Boisson, Jean-Charles
  • Debelle, Laurent
  • Passat, Nicolas
Abstract

Synchrotron X-ray microtomography (CT) gives access to images with a micrometric resolution. In the context of vascular imaging, this allows the study of structural properties of arterial walls, even for small animals such as the mouse. However, the images available with CT are non-usual, and there is no method specifically designed for their processing and analysis. This article describes a first pipeline dedicated to the segmentation of CT images of mice aorta. This pipeline builds upon conventional image processing paradigms and more recent deep learning approaches, and tackles the issue of multiscale analysis of huge-sized, high-resolution data. It provides promising results, assessed by comparison with manual annotation of sampled data. This methodological framework is a step forwards to a finer analysis of the internal structure of the aortic walls, especially for understandingthe consequences of ageing and/or disease (e.g. diabetes) on the vessels architecture.

Topics
  • impedance spectroscopy
  • aging