Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

He, Jinliang

  • Google
  • 4
  • 5
  • 47

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2021Influence of octavinyl-polyhedral oligomeric silsesquioxane on the electric treeing resistance of polypropylenecitations
  • 2021Octavinyl polyhedral oligomeric silsesquioxane on tailoring the DC electrical characteristics of polypropylene12citations
  • 2020Nanocomposites based on magnesium-oxide/aluminum-nitride/polypropylene for HVDC cable insulation2citations
  • 2020Effect of different surface treatment agents on the physical chemistry and electrical properties of polyethylene nano-alumina nanocomposites33citations

Places of action

Chart of shared publication
Given, Martin
4 / 6 shared
Siew, Wh
4 / 8 shared
Liggat, John J.
4 / 36 shared
Lin, Xiaosi
3 / 3 shared
Duan, Xuhui
1 / 1 shared
Chart of publication period
2021
2020

Co-Authors (by relevance)

  • Given, Martin
  • Siew, Wh
  • Liggat, John J.
  • Lin, Xiaosi
  • Duan, Xuhui
OrganizationsLocationPeople

document

Nanocomposites based on magnesium-oxide/aluminum-nitride/polypropylene for HVDC cable insulation

  • He, Jinliang
  • Given, Martin
  • Siew, Wh
  • Liggat, John J.
  • Lin, Xiaosi
Abstract

olypropylene (PP) with high thermal stability and good electrical properties, has attracted much attention for its potential to take the place of cross-link polyethylene (XLPE) as HVDC insulation because PP is more easily recycled than XLPE due to its thermoplasticity. Due to the adverse effect of electric field reversal under HVDC application, there is a need to find the new polymer insulation material with higher thermal conductivity and good electrical performance. This paper investigates the effect of introducing aluminum nitride (AlN) and magnesium oxide (MgO) into PP on the electrical properties of the resulting the new nanocomposites. In the sample preparation, AlN and MgO were surface-modified by KH570 (γ- methacryloxypropyltrimethoxy silane) and then introduced into PP by the solution method to manufacture the nanocomposite materials. The measurements made were the voltage breakdown characteristics and the DC conductivity. The results obtained show that the combination of AlN and MgO can slightly decrease the DC conductivity of PP/AlN/MgO nanocomposites compared with pure PP. The breakdown strength was slightly decreased. which shows that the adverse effect of AlN on the electrical performance of PP can be compensated by introducing MgO nanoparticles. Hence, the new polymer with high thermal conductivity and good electrical properties could be manufactured by combining two kinds of nanoparticles.<br/>Keywords — nanocomposites, magnesium-oxide, aluminum-nitride, polypropylene, electrical performance. <br/>

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • surface
  • polymer
  • Magnesium
  • Magnesium
  • aluminium
  • nitride
  • strength
  • thermal conductivity
  • magnesium oxide