People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Martin, Floran
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2023Multiaxial Validation of a Magneto-Elastic Vector-Play Modelcitations
- 2022Experimental characterization of the effect of uniaxial stress on magnetization and iron losses of electrical steel sheets cut by punching processcitations
- 20222D Analytical Model for Computing Eddy-Current Loss in Nonlinear Thick Steel Laminationscitations
- 20222D Analytical Model for Computing Eddy-Current Loss in Nonlinear Thick Steel Laminationscitations
- 2021Finite Element Analysis of the Magneto-mechanical Coupling Due to Punching Process in Electrical Steel Sheetcitations
- 2020Finite-Element Modeling of Magnetic Properties Degradation Due to Plastic Deformationcitations
- 2020A computationally effective method for iron loss estimation in a synchronous machine from a static field solutioncitations
- 2020Analysis of the Magneto-Mechanical Anisotropy of Steel Sheets in Electrical Applicationscitations
- 2019Effect of mechanical stress on magnetization and magnetostriction strain behavior of non-oriented Si-Fe steels at different directions and under pseudo-DC conditionscitations
- 2016Effect of magnet materials on optimal design of a high speed PMSMcitations
- 2015Analytical model for magnetic anisotropy of non-oriented steel sheetscitations
- 2015Homogenization Technique for Axially Laminated Rotors of Synchronous Reluctance Machinescitations
Places of action
Organizations | Location | People |
---|
document
A computationally effective method for iron loss estimation in a synchronous machine from a static field solution
Abstract
<p>In this paper, a computationally effective iron loss calculation method for synchronous machines is presented. The method is based on a single static 2D finite element field solution in the machine cross-section, which makes it much faster than the one based on the time-stepping solution. The developed method is applied to a salient pole synchronous machine, and the computational accuracy is validated against the time-stepping method. The proposed iron losses computation method showed a fair accuracy and a considerable speed-up of the computations. It can be an excellent alternative for the iron losses estimation in the optimization procedure of synchronous machines, where a considerable amount of finite element solutions needs to be carried out. Besides the losses comparison, local reconstruction of the time dependency of other quantities such as the magnetic vector potential and the magnetic flux density is reported for a better understanding of the method.</p>