People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Saarimaki, Eetta
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Screening of suitable random copolymer polypropylene blends for HVDC cable insulationcitations
- 2023Molecular Layer Deposition of Polyurea on Silica Nanoparticles and Its Application in Dielectric Nanocompositescitations
- 2023Nano-scale nonwoven fabrics by electrospinning of polylactic acid
- 2021Dielectric performance of silica-filled nanocomposites based on miscible (PP/PP-HI) and immiscible (PP/EOC) polymer blendscitations
- 2021Dielectric Performance of Silica-Filled Nanocomposites Based on Miscible (PP/PP-HI) and Immiscible (PP/EOC) Polymer Blendscitations
- 2021Combining good dispersion with tailored charge trapping in nanodielectrics by hybrid functionalization of silicacitations
- 2021Deposition of Ureido and Methacrylate Functionalities onto Silica Nanoparticles and Its Effect on the Properties of Polypropylene-Based Nanodielectricscitations
- 2021PP/PP-HI/silica nanocomposites for HVDC cable insulationcitations
- 2020Silica surface modification with liquid rubbers & functional groups for new polyolefin-based dielectric nano-composites
- 2020Influence of polar and unpolar silica functionalization on the dielectric properties of PP/POE nanocompositescitations
- 2020Feasibility of Mini-Scale Injection Molding for Resource-Efficient Screening of PP-Based Cable Insulation Nanocompositescitations
- 2020Silica Functionalization: How Does it Affect Space Charge Accumulation in Nanodielectrics Under DC?
- 2020From Laboratory to Industrial Scalecitations
- 2019Silica-Polypropylene Nanocomposites for Film Capacitorscitations
- 2018Airborne Dust from Mechanically Recycled Cotton during Ring Spinning
- 2015Novel thermographic inspection method to detect the moisture in early stage of the water ingress and a procedure to remove the moisture from the composite structure
- 2013New high-quality mined nanomaterials mass produced for plastic and wood-plastic nanocomposites
- 2013PVC-wood composite
- 2009Development of thermographic inspection routine exploiting phase transition of water for moisture detection in aircraft structurescitations
- 2006Novel heat durable electromechanical filmcitations
- 2005Novel heat durable electromechanical filmscitations
- 2005Novel heat durable electromechanical film processingcitations
Places of action
Organizations | Location | People |
---|
document
Silica surface modification with liquid rubbers & functional groups for new polyolefin-based dielectric nano-composites
Abstract
<p>A novel hybrid approach for surface modification of nano-silica for polyolefin-based dielectric composites is presented. A fumed nano-silica was modified with long oligomeric chains of a liquid rubber, connected via urethane bonds to the silica surface increasing the compatibility with the matrix. Additionally, a secondary amino-silane was grafted in order to alter the charge trapping properties of the silica. The long oligomeric chains provide good dispersibility of the nanosilica in polypropylene/poly(ethylene-co-octene) (PP/POE) blends, while the functional urethane group along with a secondary amino-silane affected the charge trapping properties of the nano-composites by reducing the charge traps density and simultaneously increasing their depth. Scanning Electron Microscopy along with Differential Scanning Calorimetry revealed that the silica is preferably located in the PP phase, most likely due to its lower viscosity in comparison to POE. The silica particles exhibit a nucleating effect visible in a noticeable increase of the crystallization temperature of the PP phase, especially when the silica surface treatment is performed.</p>