People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Chaudhary, Sunny
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Space charge accumulation and DC breakdown strength of epoxy nanocomposites
- 2024Impact of particle thermal treatment on dielectric properties of core-shell filled epoxy nano-composites
- 2022Dynamic mechanical response in epoxy nanocomposites incorporating various nano-silica architectures
- 2022Dielectric response in epoxy nanocomposites incorporating various nano-silica architecturescitations
- 2022Molecular dynamics of epoxy nanocomposites filled with core–shell and hollow nanosilica architecturescitations
- 2021Assessment of the chemical and electrical properties of nano structured polyethylene with antioxidant-grafted nanosilica
- 2021Effect of nanoparticle volume and surface characteristics on the bulk properties of epoxy nanocompositecitations
- 2021Investigation of the functional network modifier loading on the stoichiometric ratio of epoxy resins and their dielectric propertiescitations
- 2021Effect of shell-thickness on the dielectric properties of TiO2/SiO2 core-shell nanoparticles filled epoxy nanocompositescitations
- 2020Effect of core-shell particles on the dielectric properties of epoxy nanocompositescitations
Places of action
Organizations | Location | People |
---|
document
Assessment of the chemical and electrical properties of nano structured polyethylene with antioxidant-grafted nanosilica
Abstract
In this work five different kind of PE-based materials are presented and characterized: neat PE, PE with nano-silica particles, PE with AO in the amorphous phase, PE with AO-grafted nano-silica particles and the combination of the two latter. Initially, the chemical properties of the materials have been characterized by means of Oxidation Induction Time (OIT) and Fourier Transform InfraRed Spectroscopy (FTIR), in order to investigate their oxidability performances and their resulting chemical composition, respectively. Moreover, electrical performance of these materials has been analyzed through dielectric spectroscopy measurements in order to keep into account the actual suitability of the resulting material for electrical applications. In conclusion, materials with AO-grafted nanoparticles resulted to be convenient in terms of both chemical and electrical property evolution over time.