People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Saarimaki, Eetta
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Screening of suitable random copolymer polypropylene blends for HVDC cable insulationcitations
- 2023Molecular Layer Deposition of Polyurea on Silica Nanoparticles and Its Application in Dielectric Nanocompositescitations
- 2023Nano-scale nonwoven fabrics by electrospinning of polylactic acid
- 2021Dielectric performance of silica-filled nanocomposites based on miscible (PP/PP-HI) and immiscible (PP/EOC) polymer blendscitations
- 2021Dielectric Performance of Silica-Filled Nanocomposites Based on Miscible (PP/PP-HI) and Immiscible (PP/EOC) Polymer Blendscitations
- 2021Combining good dispersion with tailored charge trapping in nanodielectrics by hybrid functionalization of silicacitations
- 2021Deposition of Ureido and Methacrylate Functionalities onto Silica Nanoparticles and Its Effect on the Properties of Polypropylene-Based Nanodielectricscitations
- 2021PP/PP-HI/silica nanocomposites for HVDC cable insulationcitations
- 2020Silica surface modification with liquid rubbers & functional groups for new polyolefin-based dielectric nano-composites
- 2020Influence of polar and unpolar silica functionalization on the dielectric properties of PP/POE nanocompositescitations
- 2020Feasibility of Mini-Scale Injection Molding for Resource-Efficient Screening of PP-Based Cable Insulation Nanocompositescitations
- 2020Silica Functionalization: How Does it Affect Space Charge Accumulation in Nanodielectrics Under DC?
- 2020From Laboratory to Industrial Scalecitations
- 2019Silica-Polypropylene Nanocomposites for Film Capacitorscitations
- 2018Airborne Dust from Mechanically Recycled Cotton during Ring Spinning
- 2015Novel thermographic inspection method to detect the moisture in early stage of the water ingress and a procedure to remove the moisture from the composite structure
- 2013New high-quality mined nanomaterials mass produced for plastic and wood-plastic nanocomposites
- 2013PVC-wood composite
- 2009Development of thermographic inspection routine exploiting phase transition of water for moisture detection in aircraft structurescitations
- 2006Novel heat durable electromechanical filmcitations
- 2005Novel heat durable electromechanical filmscitations
- 2005Novel heat durable electromechanical film processingcitations
Places of action
Organizations | Location | People |
---|
document
Silica Functionalization: How Does it Affect Space Charge Accumulation in Nanodielectrics Under DC?
Abstract
<p>Functionalization of silica nanoparticles with polar aminosilane and its effect on space charge accumulation under high voltage direct current (DC) was studied in polypropylene (PP)/ Ethylene-Octene Copolymer (EOC) /silica nanodielectrics. The modification reaction conditions were varied in order to alter the deposited layer grafting density and morphology, and hence, the filler-polymer interfacial properties. The effect of this alteration was then studied on the space charge accumulation under a high DC field as one of the most important properties to tune for HVDC cable insulation systems. The chemical modification of the silica surface was first confirmed via Thermogravimetric Analysis (TGA) and Fourier Transform IR Spectroscopy (FTIR). Differential Scanning Calorimetry (DSC) was performed on the nanocomposites to study the effect of the nano-engineered interfacial areas on nucleation and crystal formation. The effect of the amine functional groups on the charge carrier trapping and transport in this insulation system was studied via Thermally Stimulated Depolarization Current (TSDC) method.It was argued that the amine functionality on the silica surface can induce deep trap states at the filler-polymer interfaces, and hinder further injection of the space charge. Under certain modification conditions, the aminosilane can form 'island-like' structures on the silica surface. These islands can both facilitate nucleation, inducing transcrystallization at the filler-polymer interface, and further contribute to the induction of deep traps which result in reduction of space charge accumulation in the nanodielectric.</p>