People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ritamäki, Mikael
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2019Steering Capacitor Film Development with Methods for Correct and Adequate Dielectric Performance Assessment
- 2018Compounding, Structure and Dielectric Properties of Silica-BOPP Nanocomposite Filmscitations
- 2018Short-Term Dielectric Performance Assessment of BOPP Capacitor Films: A Baseline Studycitations
- 2017The Role of Film Processing in the Large-Area Dielectric Breakdown Performance of Nano-Silica-BOPP Filmscitations
- 2017Polypropylene/SIO2 nanocomposite with improved dielectric properties for DC cables
- 2017Large-area approach to evaluate DC electro-thermal ageing behavior of BOPP thin films for capacitor insulation systemscitations
- 2016Differences in AC and DC large-area breakdown behavior of polymer thin filmscitations
- 2016Dielectric breakdown properties of mechanically recycled SiO2-BOPP nanocompositescitations
- 2015DC ramp rate effect on the breakdown response of SiO2-BOPP nanocompositescitations
- 2015Effects of thermal aging on the characteristic breakdown behavior of nano-SiO2-BOPP and BOPP filmscitations
- 2015The role of film processing in the large-area dielectric breakdown performance of nano-silica-BOPP filmscitations
Places of action
Organizations | Location | People |
---|
document
Dielectric breakdown properties of mechanically recycled SiO2-BOPP nanocomposites
Abstract
This paper reports on the effects of multiple compounding cycles on the structural, chemical, rheological and DC dielectric breakdown properties of bi-axially oriented silica–polypropylene nanocomposite films. While the effect of multiple compounding cycles on the silica particle agglomeration remains seemingly modest according to the quantitative structural analysis, the recompounding is found to markedly affect the steady shear viscosity and film processability. Fourier transform infrared spectroscopy is utilized to ascertain that no thermo-oxidative degradation is occurring during the processing. The large-area multi-breakdown measurements indicate a ~13 % shift towards higher DC dielectric strength after the second recompounding cycle, an effect which is believed to be attributable mainly to the changes in film processability. Surprisingly, a 75:25 mixture of the virgin and three-times-reprocessed nanocompounds exhibits a similar increase in dielectric strength. Particularly from the processing perspective, the results emphasize the necessity of careful consideration of property modifications upon incorporation of nanofillers.