People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Yu, P. L.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2016Improved detection limits for phthalates by selective solid-phase micro-extractioncitations
- 2015Development of a sensing system to detect C-telopeptide of type-I collagencitations
- 2014Introducing molecular selectivity in rapid impedimetric sensing of phthalatescitations
- 2013MEMS based impedimetric sensing of phthalatescitations
- 2013Ovarian Hormone Estrone Glucuronide (E1G) quantification-impedimetric electrochemical spectroscopy approachcitations
- 2013Electrochemical impedance spectroscopy based MEMS sensors for phthalates detection in water and juicescitations
- 2012Sensor and instrumentation for progesterone detectioncitations
- 2011Detection of natural bio-toxins using an improved design interdigital sensorscitations
Places of action
Organizations | Location | People |
---|
document
MEMS based impedimetric sensing of phthalates
Abstract
<p>Phthalate esters are known ubiquitous teratogenic and carcinogenic environmental and food pollutants. Their detection and quantification is strictly laboratory based, time consuming, expensive and professionally handled procedure. Presented research work describes a real time non-invasive detection technique for phthalates detection in ethanol, water and drinks. The new type of inter-digital sensor design incorporating multiple sensing gold electrodes were fabricated on silicon substrate based on thin film micro-electromechanical system (MEMS) using semiconductor device fabrication technology. A passivation layer of Silicon Nitride (Si3N4) was used to functionalize the sensor. Various concentrations (0.1 to 20ppm) of DINP (di-isononyl phthalates) in ethanol and di (2-ethylhexyl) phthalate (DEHP) in deionized MilliQ water were subjected to the testing system by dip testing method. Electrochemical impedance spectroscopy (EIS) technique was used to obtain impedance spectra in order to determine sample conductance for evaluation of its dielectric properties. The impedance spectra so obtained showed that the sensor was able to detect the presence of phthalates in the samples distinctively. Electrochemical Spectrum Analyser was used to model the experimentally obtained impedance spectra by curve fitting technique to figure out Constant Phase Element (CPE) equivalent circuit. Locally available energy drink and juice was added with phthalates in concentrations of 2, 6 and 10ppm to observe the performance of the sensor in such products. Experimental results showed that the new sensor was able to detect different concentrations of phthalates in energy drinks.</p>