People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Swingler, J.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2016Data for the paper: The importance of the film structure during self-powered ibuprofen salicylate drug release from polypyrrole electrodeposited on AZ31 Mg
- 2012The effects of porosity, electrode and barrier materials on the conductivity of piezoelectric ceramics in high humidity and dc electric fieldcitations
- 2012The influence of electrode materials on the electrical degradation process of lead zirconate titanate under harsh operating environmentcitations
- 2011Electrical conduction mechanisms in piezoelectric ceramics under harsh operating conditionscitations
- 2010Current leakage and transients in ferroelectric ceramics under high humidity conditionscitations
- 2009The effect of relative humidity, temperature and electrical field on leakage currents in piezo-ceramic actuators under dc biascitations
- 2009Micro-computer tomography-An aid in the investigation of structural changes in lead zirconate titanate ceramics after temperature-humidity bias testingcitations
- 2009Study of temperature change and vibration induced fretting on intrinsically conducting polymer contact systemscitations
- 2006The contact resistance force relationship of an intrinsically conducting polymer interfacecitations
- 2006The influence of thermal cycling and compressive force on the resistance of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonic acid)-coated surfacescitations
- 2005The fretting characteristics of intrinsically conducting polymer contacts
- 2002Fretting corrosion studies of an extrinsic conducting polymer and tin Interfacecitations
- 2002Fretting corrosion and the reliability of multicontact connector terminalscitations
- 2000Degradation of road tested automotive connectorscitations
Places of action
Organizations | Location | People |
---|
document
Fretting corrosion studies of an extrinsic conducting polymer and tin Interface
Abstract
Novel contact connector materials such as conducting polymers are becoming available which improve performance and enable further miniaturisation. Studies of a polymer-tin interface have been carried out to characterise contact resistance performance under fretting conditions. Degradation mechanisms have been identified using contact resistance measurements and surface analysis tools. These mechanisms have been shown to be different to those found in the tin-tin interface. The polymer-tin interface performs significantly better than a clean tin-tin interface, requiring more than three times the number of fretting cycles to fail (attaining 200 m?). The study shows that debris is not deposited at the end of the wear track as in a tin-tin interface. Additionally, once the contact resistance attains high values, the polymer-tin interface recovers to low values. The elastic contact is proposed as an advantageous characteristic of conducting polymers which can be used to eliminate fretting at the contact interface.