People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mueller, Maik
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Creep characterization of lead-free solder alloys over an extended temperature range used for fatigue modeling
- 2023Temperature-dependent Creep Characterization of Lead-free Solder Alloys Using Nanoindentation for Finite Element Modelingcitations
- 2022Corrosion study on Cu/Sn-Ag solid-liquid interdiffusion microbumps by salt spray testing with 5 wt.% NaCl solutioncitations
- 2020Grain Structure Analysis of Cu/SiO2 Hybrid Bond Interconnects after Reliability Testingcitations
- 2020Morphologies of Primary Cu6Sn5 and Ag3Sn Intermetallics in Sn–Ag–Cu Solder Ballscitations
- 2018Morphology Variations of Primary Cu6Sn5 Intermetallics in Lead-Free Solder Ballscitations
- 2018Characterization of low temperature Cu/In bonding for fine-pitch interconnects in three-dimensional integrationcitations
- 2013Microstructure investigation of Cu/SnAg solid-liquid interdiffusion interconnects by Electron Backscatter Diffractioncitations
- 2012Effects of bonding pressure on quality of SLID interconnectscitations
- 2011Solidification processes in the Sn-rich part of the SnCu systemcitations
- 2010Microstructure Characterization Of Lead‐Free Solders Depending On Alloy Compositioncitations
- 2010Metallographic preparation of the SnAgCu solders for optical microscopy and EBSD Investigationscitations
Places of action
Organizations | Location | People |
---|
document
Creep characterization of lead-free solder alloys over an extended temperature range used for fatigue modeling
Abstract
Temperature-dependent creep characterization of SAC405 and SACQ solder alloys was performed using the constant force nanoindentation method. Creep rate behavior was investigated in a temperature range from −55°C to 175°C to develop the Garofalo creep model for both materials. The bipartite Garofalo model was proposed to describe a creep behavior for the whole temperature range, as the single model was not suitable to describe experimentally measured creep rates accurately.The derived Garofalo creep models were implemented in the thermomechanical finite element (FE) model to simulate accumulated creep, during two different temperature cycling conditions. The FE results of the derived bipartite Garofalo model were compared with the classic single model approach. In addition, using FE analysis, Garofalo material models were compared to Anand models available from literature for corresponding alloys.