Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mueller, Maik

  • Google
  • 12
  • 25
  • 82

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (12/12 displayed)

  • 2024Creep characterization of lead-free solder alloys over an extended temperature range used for fatigue modelingcitations
  • 2023Temperature-dependent Creep Characterization of Lead-free Solder Alloys Using Nanoindentation for Finite Element Modeling3citations
  • 2022Corrosion study on Cu/Sn-Ag solid-liquid interdiffusion microbumps by salt spray testing with 5 wt.% NaCl solution1citations
  • 2020Grain Structure Analysis of Cu/SiO2 Hybrid Bond Interconnects after Reliability Testing13citations
  • 2020Morphologies of Primary Cu6Sn5 and Ag3Sn Intermetallics in Sn–Ag–Cu Solder Balls7citations
  • 2018Morphology Variations of Primary Cu6Sn5 Intermetallics in Lead-Free Solder Balls1citations
  • 2018Characterization of low temperature Cu/In bonding for fine-pitch interconnects in three-dimensional integration17citations
  • 2013Microstructure investigation of Cu/SnAg solid-liquid interdiffusion interconnects by Electron Backscatter Diffraction8citations
  • 2012Effects of bonding pressure on quality of SLID interconnects14citations
  • 2011Solidification processes in the Sn-rich part of the SnCu system4citations
  • 2010Microstructure Characterization Of Lead‐Free Solders Depending On Alloy Composition6citations
  • 2010Metallographic preparation of the SnAgCu solders for optical microscopy and EBSD Investigations8citations

Places of action

Chart of shared publication
Dudash, Viktor
2 / 3 shared
Meier, Karsten
2 / 17 shared
Machani, Kashi Vishwanath
2 / 4 shared
Kuechenmeister, Frank
2 / 4 shared
Geisler, Holm
2 / 2 shared
Bock, Karlheinz
2 / 43 shared
Wieland, Marcel
2 / 4 shared
Wolf, M. Juergen
1 / 2 shared
Steller, Wolfram
1 / 3 shared
Wenzel, Laura
1 / 2 shared
Panchenko, Juliana
10 / 23 shared
Wambera, Laura
1 / 2 shared
Wolf, M. J.
1 / 9 shared
Hanisch, Anke
1 / 1 shared
Bartusseck, Irene
1 / 1 shared
Rudolph, Catharina
1 / 2 shared
Wiese, Steffen
3 / 6 shared
Wolter, Klaus-Jürgen
2 / 7 shared
Meyer, Jörg
1 / 11 shared
Wolf, Jürgen M.
1 / 1 shared
Bickel, Steffen
1 / 3 shared
Wolter, Klaus-Juergen
4 / 5 shared
Grafe, Juergen
2 / 2 shared
Schindler, Sebastian
1 / 3 shared
Wolter, Klausjuergen
1 / 1 shared
Chart of publication period
2024
2023
2022
2020
2018
2013
2012
2011
2010

Co-Authors (by relevance)

  • Dudash, Viktor
  • Meier, Karsten
  • Machani, Kashi Vishwanath
  • Kuechenmeister, Frank
  • Geisler, Holm
  • Bock, Karlheinz
  • Wieland, Marcel
  • Wolf, M. Juergen
  • Steller, Wolfram
  • Wenzel, Laura
  • Panchenko, Juliana
  • Wambera, Laura
  • Wolf, M. J.
  • Hanisch, Anke
  • Bartusseck, Irene
  • Rudolph, Catharina
  • Wiese, Steffen
  • Wolter, Klaus-Jürgen
  • Meyer, Jörg
  • Wolf, Jürgen M.
  • Bickel, Steffen
  • Wolter, Klaus-Juergen
  • Grafe, Juergen
  • Schindler, Sebastian
  • Wolter, Klausjuergen
OrganizationsLocationPeople

document

Creep characterization of lead-free solder alloys over an extended temperature range used for fatigue modeling

  • Dudash, Viktor
  • Meier, Karsten
  • Machani, Kashi Vishwanath
  • Kuechenmeister, Frank
  • Geisler, Holm
  • Bock, Karlheinz
  • Wieland, Marcel
  • Mueller, Maik
Abstract

Temperature-dependent creep characterization of SAC405 and SACQ solder alloys was performed using the constant force nanoindentation method. Creep rate behavior was investigated in a temperature range from −55°C to 175°C to develop the Garofalo creep model for both materials. The bipartite Garofalo model was proposed to describe a creep behavior for the whole temperature range, as the single model was not suitable to describe experimentally measured creep rates accurately.The derived Garofalo creep models were implemented in the thermomechanical finite element (FE) model to simulate accumulated creep, during two different temperature cycling conditions. The FE results of the derived bipartite Garofalo model were compared with the classic single model approach. In addition, using FE analysis, Garofalo material models were compared to Anand models available from literature for corresponding alloys.

Topics
  • fatigue
  • nanoindentation
  • creep