People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zhang, Bingbing
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
document
Thermal aging modeling of molding compound under high-temperature storage and temperature cycling conditions
Abstract
<p>In microelectronic packages, generally the chip is encapsulated by a molding compound (MC). The MC provides a mechanical support for the chip and isolates it from the environment and as a result protects the encapsulated chip. It is well known that MC's are polymer-based materials. When packages are exposed to a harsh environment such as to high-temperature storage or to thermal cycling, the mechanical properties of the MC's can change significantly. Consequently this could result into reliability issues of these packages. For a long time, there was no simple and efficient model method available to simulate the mechanical behavior of these packages under thermal aging conditions. As a result, it was hard to forecast the package reliability after a period of thermal aging. Since in our previous work [1,2] the thermomechanical properties of MC's before and after thermal aging were systematically characterized, the above problem was merely solved. A simple and efficient modeling method was proposed to simulate the thermal aging effects on MC's [2]. In this paper, a bi-material sample consisting of a MC layer on a Copper substrate is prepared and used to verify the proposed modeling method at two different thermal conditions: High-temperature storage (HTS) and Temperature cycling (TC). Based on the proposed modeling method the mechanical behavior of the bi-material sample after aging under these (different) thermal conditions are established throug FEM simulation. The simulation results match the experiment results quite well.</p>