People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Van Driel, Willem
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Training Convolutional Neural Networks with Confocal Scanning Acoustic Microscopy Imaging for Power QFN Package Delamination Classification
- 2023Heterogeneous Integration of Diamond Heat Spreaders for Power Electronics Applicationcitations
- 2022Interphase effect on the effective moisture diffusion in epoxy–SiO2 compositescitations
- 2021Facile synthesis of ag nanowire/tio2 and ag nanowire/tio2/go nanocomposites for photocatalytic degradation of rhodamine bcitations
- 2021Exploring water and ion transport process at silicone/copper interfaces using in-situ electrochemical and Kelvin probe approachescitations
- 2018Solid State Lighting Reliability Part 2
- 2016Creep fatigue models of solder jointscitations
- 2015An overview of scanning acoustic microscope, a reliable method for non-destructive failure analysis of microelectronic componentscitations
- 2010Designing for reliability using a new Wafer Level Package structure
- 2009Virtual Prototyping for PPM-level Failures in Microelectronic Packages
- 2009Reliability of Wafer Level Thin Film MEMS Packages during Wafer Backgrinding
- 2008Effect of aging of packaging materials on die surface cracking of a SiP carrier
- 2008Die Fracture Probability Prediction and Design Guidelines for Laminate-Based Over-Molded Packages
- 2007Modeling of the mechanical stiffness of the GaP/GaAs nanowires with point defects/stacking faults
- 2007Efficient damage sensitivity analysis of advanced Cu/low-k bond pad structures by means of the area release energy criterion
- 2007Correlation between chemistry of polymer building blocks and microelectronics reliability
- 2007Measuring the through-plane elastic modulus of thin polymer films in situ
- 2007Characterization of moisture properties of polymers for IC packaging
- 2006Mixed Mode Bending Test for Interfacial Adhesion in Semiconductor Applications
- 2005The precision of large radio continuum source catalogues. An application of the SPECFIND toolcitations
Places of action
Organizations | Location | People |
---|
document
An overview of scanning acoustic microscope, a reliable method for non-destructive failure analysis of microelectronic components
Abstract
<p>In a highly competitive and demanding microelectronics market, reliable non-destructive methods for quality control and failure analysis of electronic components are highly demanded. Any robust non-destructive method should be capable of dealing with the complexity of miniaturized assemblies such as chip-scale packages and 3D IC stacks. Scanning acoustic microscopy (SAM) is indeed one the best non-destructive tools for failure analysis purposes. It is also a useful technique for imaging the morphology, location and size distribution of defects in different microelectronics components. SAM can detect delaminations at sub-micron thicknesses. It is also one of the only available techniques capable of efficiently evaluating popcorning in PBGA's and is a also useful device to detect sub-micron air gaps. SAM can also be used to measure the thickness of an internal layer of material. Overall, SAM is an efficient tool for evaluating such a wide range of different defects in printed circuit boards, underfills, BGAs, wire bonds, discrete components, and wafers. In SAM a focused sound is directed from a transducer at a small point on a target object, as is schematically shown here. Sound, hitting a defect, inhomogeneity or a boundary inside material, is partly scatted and will be detected. The transducer transforms the reflected sound pulses into electromagnetic pulses which are displayed as pixels with defined gray values thereby creating an image. This article aims at giving an overview of scanning acoustic microscope (SAM) and explaining its operating principles and its limitations. A few examples are also given for further clarification.</p>