Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Esche, Maria

  • Google
  • 1
  • 6
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Development of a Ultra-Thin Glass Based Pressure Sensor for High-Temperature Applicationcitations

Places of action

Chart of shared publication
Reichel, Ludwig
1 / 1 shared
Meier, Karsten
1 / 17 shared
Schulze, Robin
1 / 3 shared
Bock, Karlheinz
1 / 43 shared
Knoch, Philip
1 / 1 shared
Endisch, Christian
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Reichel, Ludwig
  • Meier, Karsten
  • Schulze, Robin
  • Bock, Karlheinz
  • Knoch, Philip
  • Endisch, Christian
OrganizationsLocationPeople

document

Development of a Ultra-Thin Glass Based Pressure Sensor for High-Temperature Application

  • Reichel, Ludwig
  • Esche, Maria
  • Meier, Karsten
  • Schulze, Robin
  • Bock, Karlheinz
  • Knoch, Philip
  • Endisch, Christian
Abstract

In this work, an ultra-thin glass substrate based absolute pressure sensor was developed and manufactured to study the implementation of different build-up technologies with focus on high-temperature sensor application. Physical vapour deposition was used to realise strain gauge sensor structures as well as several protective layers. Screen printed thick-film layers were applied to deposit routing traces. Also, a housing assembly using two ultra-thin glass substrates was achieved this way. The electrical connection to the measurement instrumentation was realised by either platinum or high purity nickel wires. Wires were connected to the contact pads by thick-film sintering. The measured overall thickness of the sensor is 390 µm. Furthermore, the ultra-thin glass substrates were cut by Laser and saw dicing resulting in a recommendation to prefer Laser dicing for future work. To characterise the pressure sensor, a customised pressure chamber with integrated muffle furnace was used. First tests showed that the manufactured sensor proved to be functional at temperatures of up to 450 °C while applying a pressure range of 1 to 5 bar (absolute).

Topics
  • Deposition
  • impedance spectroscopy
  • nickel
  • Platinum
  • glass
  • glass
  • wire
  • sintering
  • high purity nickel