People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ross, Glenn
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (35/35 displayed)
- 2024Scaling of piezoelectric in-plane NEMS : Towards nanoscale integration of AlN-based transducer on vertical sidewallscitations
- 2024Electromigration Reliability of Cu3Sn Microbumps for 3D Heterogeneous Integration
- 2024Metalorganic Chemical Vapor Deposition of AlN on High Degree Roughness Vertical Surfaces for MEMS Fabricationcitations
- 2024Thermal Boundary Conductance of Direct Bonded Aluminum Nitride to Silicon Interfacescitations
- 2024Investigative characterization of delamination at TiW-Cu interface in low-temperature bonded interconnectscitations
- 2023Impact of Inherent Design Limitations for Cu–Sn SLID Microbumps on Its Electromigration Reliability for 3D ICscitations
- 2023Achieving low-temperature wafer level bonding with Cu-Sn-In ternary at 150 °Ccitations
- 2023Co, In, and Co–In alloyed Cu6Sn5 interconnects: Microstructural and mechanical characteristicscitations
- 2023In-Plane AlN-based Actuator: Toward a New Generation of Piezoelectric MEMScitations
- 2022Investigation of the microstructural evolution and detachment of Co in contact with Cu–Sn electroplated silicon chips during solid-liquid interdiffusion bondingcitations
- 2022Unlocking the Potential of Piezoelectric Films Grown on Vertical Surfaces for Inertial MEMScitations
- 2022Finite element simulation of solid-liquid interdiffusion bonding process: Understanding process dependent thermomechanical stresscitations
- 2022Finite element simulation of solid-liquid interdiffusion bonding processcitations
- 2022Aluminium corrosion in power semiconductor devicescitations
- 2021Characterization of AlScN-based multilayer systems for piezoelectric micromachined ultrasound transducer (pMUT) fabricationcitations
- 2021Characterization of AlScN-based multilayer systems for piezoelectric micromachined ultrasound transducer (pMUT) fabricationcitations
- 2021Wafer Level Solid Liquid Interdiffusion Bondingcitations
- 2021Stability and residual stresses of sputtered wurtzite AlScN thin filmscitations
- 2021Characterization of AlScN-Based Multilayer Systems for Piezoelectric Micromachined Ultrasound Transducer (pMUT) Fabricationcitations
- 2021A humidity-induced novel failure mechanism in power semiconductor diodescitations
- 2021Low-temperature Metal Bonding for Optical Device Packagingcitations
- 2020The impact of residual stress on resonating piezoelectric devicescitations
- 2020The impact of residual stress on resonating piezoelectric devicescitations
- 2020MOCVD Al(Ga)N Insulator for Alternative Silicon-On-Insulator Structurecitations
- 2020Metalorganic chemical vapor deposition of aluminum nitride on vertical surfacescitations
- 2019Intermetallic Void Formation in Cu-Sn Micro-Connects
- 2019The Role of Ultrafine Crystalline Behavior and Trace Impurities in Copper on Intermetallic Void Formationcitations
- 2018Process Integration and Reliability of Wafer Level SLID Bonding for Poly-Si TSV capped MEMScitations
- 2018The effect of platinum contact metallization on Cu/Sn bondingcitations
- 2018Stability of Piezoelectric Al1-xScxN Thin Films
- 2017XRD and ToF-SIMS study of intermetallic void formation in Cu-Sn micro-connectscitations
- 2017Gigahertz scanning acoustic microscopy analysis of voids in Cu-Sn micro-connectscitations
- 2017Key parameters influencing Cu-Sn interfacial void formation
- 2016Void formation and its impact on Cu-Sn intermetallic compound formationcitations
- 2014Void formation in Cu-Sn SLID bonding for MEMScitations
Places of action
Organizations | Location | People |
---|
conferencepaper
MOCVD Al(Ga)N Insulator for Alternative Silicon-On-Insulator Structure
Abstract
Due to the functional limitations of SiO2 for SOI applications, alternative dielectric materials have been investigated. Alternative SOI materials in this work include, AlN and AlGaN. The dielectrics were deposited using MOCVD, and with the aid of PECVD deposited SiO2, and the SiO2 was directly bonded to a handle Si wafer. Tensile tests were performed on the samples to examine the fracture behavior and maximum tensile stresses, with results being comparable to a traditional SOI. Characterization was undertaken using TEM to understand the microstructural and interfacial properties of alternative SOI. High crystal quality Al(Ga)N was achieved on a Si(111) substrate that generally contained well defined chemical interfaces. Finally, synchrotron X-ray diffraction topography was used to understand the topographical strain profile of the device and handle wafers. Topography results showed different strain network properties between the device and handle wafer. This work has demonstrated preliminary feasibility of using alternative dielectrics for SOI applications. ; Peer reviewed