People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Panchenko, Juliana
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Laboratory X-ray Microscopy of 3D Nanostructures in the Hard X-ray Regime Enabled by a Combination of Multilayer X-ray Opticscitations
- 2023Intermetallic Growth Study of Ultra-Thin Copper and Tin Bilayer for Hybrid Bonding Applicationscitations
- 2023Cu-Cu Thermocompression Bonding with a Self-Assembled Monolayer as Oxidation Protection for 3D/2.5D System Integrationcitations
- 2022Corrosion study on Cu/Sn-Ag solid-liquid interdiffusion microbumps by salt spray testing with 5 wt.% NaCl solutioncitations
- 2022Metallurgical aspects and joint properties of Cu-Ni-In-Cu fine-pitch interconnects for 3D integrationcitations
- 2022Determination of melting and solidification temperatures of Sn-Ag-Cu solder spheres by infrared thermographycitations
- 2020Grain Structure Analysis of Cu/SiO2 Hybrid Bond Interconnects after Reliability Testingcitations
- 2020Low temperature solid state bonding of Cu-In fine-pitch interconnects
- 2020Morphologies of Primary Cu6Sn5 and Ag3Sn Intermetallics in Sn–Ag–Cu Solder Ballscitations
- 2020Grain Structure Analysis of Cu/SiO2Hybrid Bond Interconnects after Reliability Testingcitations
- 2019Effects of isothermal storage on grain structure of Cu/Sn/Cu microbump interconnects for 3D stackingcitations
- 2018Morphology Variations of Primary Cu6Sn5 Intermetallics in Lead-Free Solder Ballscitations
- 2018Characterization of low temperature Cu/In bonding for fine-pitch interconnects in three-dimensional integrationcitations
- 2017Influence of flux-assisted isothermal storage on intermetallic compounds in Cu/SnAg microbumpscitations
- 2017Fabrication and characterization of precise integrated titanium nitride thin film resistors for 2.5D interposercitations
- 2014Degradation of Cu6Sn5 intermetallic compound by pore formation in solid-liquid interdiffusion Cu/Sn microbump interconnectscitations
- 2013Microstructure investigation of Cu/SnAg solid-liquid interdiffusion interconnects by Electron Backscatter Diffractioncitations
- 2012Effects of bonding pressure on quality of SLID interconnectscitations
- 2011The creep behaviour and microstructure of ultra small solder jointscitations
- 2011Solidification processes in the Sn-rich part of the SnCu systemcitations
- 2010Microstructure Characterization Of Lead‐Free Solders Depending On Alloy Compositioncitations
- 2010The scaling effect on microstructure and creep properties of Sn-based solderscitations
- 2010Metallographic preparation of the SnAgCu solders for optical microscopy and EBSD Investigationscitations
Places of action
Organizations | Location | People |
---|
document
Grain Structure Analysis of Cu/SiO2 Hybrid Bond Interconnects after Reliability Testing
Abstract
The focus of this study is a grain structure analysis of hybrid Cu/SiO2 wafer-to-wafer bonding interconnects after reliability testing. Hybrid bonding also known as direct bond interconnect is a very promising technology for fine pitch bonding without solder capped microbumps. The elimination of solder enables smaller bonding pitches and smaller interconnect sizes. The main challenge of the hybrid bonding technology is the preparation of a clean Cu/SiO2 surface with a required Cu dishing. The development of the Cu grain structure after hybrid bonding and after reliability testing was investigated in detail in this study. The wafer-to-wafer stack with Cu interconnects (diameter 4 μm and pitch 18 μm) enclosed by SiO2 was prepared. This wafer stack was diced into small pieces after successful bonding for further reliability testing. Two types of tests were carried out according to JEDEC standards: temperature shock test at -40°C / +125°C with up to 1000 cycles and isothermal storage at 150°C, 300°C, and 400°C. The resulting microstructure was characterized by scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). The results show that Cu/Cu interconnects have a {111} texture parallel to the bonding interface that barely changes with reliability testing. EBSD indicates the intergrowth between the Cu grains after the isothermal storage. Significant grain coarsening was found for the isothermal storage at 400 °C in comparison to the state after bonding. The details of the bonding interface (defects and grain boundaries) are presented as well and discussed with regard to recent publications.