People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Amalu, Dr Emeka
Teesside University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Mineral wastescitations
- 2024Effect of Creep, Fatigue and Random Vibration on the Integrity of Solder Joints in BGA Packagecitations
- 2024Critical methods of geopolymer feedstocks activation for suitable industrial applicationscitations
- 2024Critical solder joint in insulated gate bipolar transistors (IGBT) power module for improved mechanical reliabilitycitations
- 2023Characterising Solder Materials from Random Vibration Response of Their Interconnects in BGA Packagingcitations
- 2023Effects of Reflow Profile and Miniaturisation on the Integrity of Solder Joints in Surface Mount Chip Resistorscitations
- 2021Thermal fatigue life of ball grid array (BGA) solder joints made from different alloy compositionscitations
- 2020Comparing and benchmarking fatigue behaviours of various SAC solders under thermo-mechanical loadingcitations
- 2019Creep damage of BGA solder interconnects subjected to thermal cycling and isothermal ageingcitations
- 20193D printing of intricate sand cores for complex copper castings
- 2018Effect of Temperature on Conductivity of PLA-Carbon 3D Printed Components.
- 2016Effects of component stand-off height on reliability of solder joints in assembled electronic component
- 2015Effect of intermetallic compounds on thermo-mechanical reliability of lead-free solder joints in solar cell assembly
- 2015A review of interconnection technologies for improved crystalline silicon solar cell photovoltaic module assemblycitations
- 2012High-temperature fatigue life of flip chip lead-free solder joints at varying component stand-off heightcitations
- 2012High temperature reliability of lead-free solder joints in a flip chip assemblycitations
- 2012Thermal management materials for electronic control unitcitations
- 2012Prediction of damage and fatigue life of high-temperature flip chip assembly interconnections at operationscitations
- 2011Effect of solder joint integrity on the thermal performance of a TEC for a 980nm pump laser module
Places of action
Organizations | Location | People |
---|
document
Comparing and benchmarking fatigue behaviours of various SAC solders under thermo-mechanical loading
Abstract
While the fatigue behaviours (including fatigue life predictions) of lead-free solder joints have been extensively researched in the last 15 years, these are not adequately compared and benchmarked for different lead-free solders that are being used. As more and more fatigue properties of lead-free solders are becoming available, it is also critical to know how fatigue behaviours differ under different mathematical models. This paper addresses the challenges and presents a comparative study of fatigue behaviours of various mainstream lead-free SnAg-Cu (SAC) solders and benchmarked those with lead-based eutectic solder. Creep-induced fatigue and fatigue life of leadbased eutectic Sn63Pb37 and four lead-free SAC solder alloys: SAC305, SAC387, SAC396 and SAC405 are analysed through simulation studies. The Anand model is used to simulate the inelastic deformation behaviour of the solder joints under accelerated thermal cycling (ATC). It unifies the creep and rateindependent plastic behaviour and it is used to predict the complex stress-strain relationship of solders under different temperatures and strain rates, which are required in the prediction of fatigue life using the fatigue life models such as Engelmaier, Coffin-Mason and Solomon as the basis of our comparison. The ATC was carried out using temperature range<br/>from −𝟒𝟎℃ 𝐭𝐨 𝟏𝟓𝟎℃ . The fatigue damage propagation is determined with finite element (FE) simulation, which allows virtual prototyping in the design process of electronics devices. The simulation was carried out on a BGA (36 balls, 𝟔 × 𝟔 matrix) mounted onto Cu padded substrate. Results are analysed for plastic strain, Von mises stress, strain energy density, and stress-strain hysteresis loop. The simulation results show that the fatigue behaviours of lead-based eutectic<br/>Sn63Pb37 solder is comparable to those of lead-free SAC solders. Among the four SAC solders, SAC387 consistently produced higher plastic strain, strain energy and stress than the other solders. The fatigue life’s estimation of the solder joint was investigated using Engelmaier, Coffin-Manson, and Solomon models. Results obtained show that SAC405 has the highest fatigue life (25.7, 21.1 and 19.2 years) followed by SAC396 (18.7, 20.3 and 17.9 years) and SAC305 (15.2, 13.6 and 16.2 years) solder alloys respectively. Predicting the fatigue life of these solder joints averts problems in electronics design for reliability and quality, which if not taken care of, may result in lost revenue. Predictive fatigue analysis can also considerably reduce premature failure, and modern analysis technique such as one used in this research is progressively helping to provide comprehensive product life expectancy data.<br/>