People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bock, Karlheinz
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (43/43 displayed)
- 2024Creep characterization of lead-free solder alloys over an extended temperature range used for fatigue modeling
- 2024Integration of Multi-Lithography Technologies for the Fabrication of Flexible Optical Linkcitations
- 2023Feasibility Investigation of Machine Learning for Electronic Reliability Analysis using FEAcitations
- 2023Electro-optical co-integration platform for high-density hybrid systems - SILHOUETTE
- 2023Integration of Multi-Lithography Technologies for the Fabrication of Flexible Optical Linkcitations
- 2023Influence of Annealing on Microstructure of Electroplated Copper Trenches in Back-End-Of-Linecitations
- 2023Temperature-dependent Creep Characterization of Lead-free Solder Alloys Using Nanoindentation for Finite Element Modelingcitations
- 2023Improving the Vibration Reliability of SAC Flip-Chip Interconnects Using Underfillcitations
- 2023Characterization of Embedded and Thinned RF Chipscitations
- 2023Wafer Level Chip Scale Package Failure Mode Prediction using Finite Element Modelingcitations
- 2023Feasibility and Optimisation of Cu-Sintering under Nitrogen Atmospherecitations
- 2022Characterization of material adhesion in redistribution multilayer for embedded high-frequency packagescitations
- 2022Embedding of Thinned RF Chips and Electrical Redistribution Layer Characterizationcitations
- 2022Process Developments on Sheet Molding and Redistribution Deposition for Cu-Pillar Chipscitations
- 2022Development of a Ultra-Thin Glass Based Pressure Sensor for High-Temperature Application
- 2020Stereolithographic printed polymers on ceramic for 3D-opto-MIDcitations
- 2020Influence of flexibility of the interconnects on the dynamic bending reliability of flexible hybrid electronicscitations
- 2019Combination of Thick-Film Hybrid Technology and Polymer Additive Manufacturing for High-Performance Mechatronic Integrated Devicescitations
- 2019Analysis of flip-chip solder joints under isothermal vibration loadingcitations
- 2018Interconnect Technology Development for 180GHz Wireless mm-Wave System-in-Foil Transceiverscitations
- 2018The future of short-range high-speed data transmissioncitations
- 2018Will 3D-semiadditive packaging with high conductive redistribution layer and process temperatures below 100°C enable new electronic applications?citations
- 2018Roll-to-roll processing of film substrates for hybrid integrated flexible electronicscitations
- 2018Wire Bonding of Surface Acoustic Wave (SAW) Sensors for High Temperature Applicationscitations
- 2018Evaluation of Nanoparticle Inks on Flexible and Stretchable Substrates for Biocompatible Applicationcitations
- 2017Fatigue measurement setup under combined thermal and vibration loading on electronic SMT assemblycitations
- 2016A novel test method for robustness assessment of very small, functional ultra-thin chips embedded in flexible foils
- 2016Screen printed conductive pastes for biomedical electronicscitations
- 2015Finite element analysis of uniaxial bending of ultra-thin silicon dies embedded in flexible foil substratescitations
- 2015Reliability study on SMD components on an organic substrate with a thick copper core for power electronics applicationscitations
- 2014Investigations of the fracture strength of thin silicon dies embedded in flexible foil substratescitations
- 2014Air-stable, high current density, solution-processable, amorphous organic rectifying diodes (ORDs) for low-cost fabrication of flexible passive low frequency RFID tagscitations
- 2013"Sensor-filter" - intelligent micro filter system in foil technology
- 2013Genotyping of single nucleotide polymorphisms by melting curve analysis using thin film semi-transparent heaters integrated in a lab-on-foil systemcitations
- 2013Foil-based DNA melting curve analysis platform for low-cost point-of-care molecular diagnostics
- 2012"Sensor-filter" - intelligent micro filter system in foil technology
- 2012DNA melting curve analysis on semi-transparent thin film microheater on flexible lab-on-foil substrate
- 2011Ultra-thin wafer fabrication through dicing-by-thinningcitations
- 2011Influence of wafer grinding and etching techniques on the fracture strength of thin silicon substratescitations
- 2010Rapid prototyping of electronic modules combining aerosol printing and ink jet printingcitations
- 2010Electrical stress on film resistive structures on flexible substratescitations
- 2009Properties of conductive microstructures containing nano sized silver particlescitations
- 2008Selective one-step plasma patterning process for fluidic self-assembly of silicon chipscitations
Places of action
Organizations | Location | People |
---|
document
Wire Bonding of Surface Acoustic Wave (SAW) Sensors for High Temperature Applications
Abstract
<p>SAW sensors are very suitable for high temperature applications up to 1,000 °C or higher. In this work CTGS substrates were used as test sample material. To realize a sensor setup an interdigital transducer (IDT) is necessary and deposited onto the surface of CTGS. In the present work thin film deposited tungsten molybdenum (WMo) and ruthenium aluminum (RuAl) as functional chip metallization will be investigated. For electrical interconnecting of sensor dies wire bonding is the dominant technology in general. Therefore, wire bonding is also the first choice to interconnect SAW sensors. Typical wire bonding materials are Copper, Gold or Aluminum (respectively AlSi1). With regard to high temperature applications up to 1,000 °C these materials have an unsuitable melting point. With regard to reliability the homologous temperature T/T<sub>m</sub>should be less than 0.5 i.e. the melting point of the bonding wire has to be at least around 2,275 °C. In [1] Wolfram (TS =3,422 °C) is described as suitable wire material, but it is not common for wire bonding at present. Platinum (TS =1,768 °C) is the best fitting material which is available as adequate bonding wires at the market and already approved by wire bonding. So it is possible to use this material at least up to 748 °C for a homologous temperature of below 0.5. Another critical point besides the wire material is the chip metallization of the IDT and the antenna of the wireless SAW sensors. To reduce the thermoelectric effects at high temperatures and to improve the wire bonding process, platinum finish metallization are being investigated for both, CTGS and antenna on ceramic. For chip metallization thin film technology is used. For antenna either the thin film technology or the thick film technology can be used, while thick film technology is standard for this application. However, a combination of both technologies is applied in this paper to reach best results. Ultrasonic and Thermosonic wire bonding is also compared as main technologies for connecting the SAW chip to the antenna. In according to the DVS guideline 2811 wire pull and ball shear tests were performed on test samples to evaluate the bond quality. In publication [2] an increasing of pull strength after storage at high temperature is described. Therefore, the manufactured test samples were also stored at 800 °C for 2h and 10 h under high vacuum. The pull and shear test results are better as the initial results as expected.</p>