Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vollebregt, Sten

  • Google
  • 14
  • 58
  • 174

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (14/14 displayed)

  • 2023The sensitivity enhancement of TiO<sub>2</sub>-based VOCs sensor decorated by gold at room temperature26citations
  • 2022Patterning of fine-features in nanoporous films synthesized by spark ablation1citations
  • 2022Multilayer CVD graphene electrodes using a transfer-free process for the next generation of optically transparent and MRI-compatible neural interfaces22citations
  • 2022Multilayer CVD graphene electrodes using a transfer-free process for the next generation of optically transparent and MRI-compatible neural interfaces22citations
  • 2022Enhancement of Room Temperature Ethanol Sensing by Optimizing the Density of Vertically Aligned Carbon Nanofibers Decorated with Gold Nanoparticles18citations
  • 2022Hydrogenated Amorphous Silicon Carbide12citations
  • 2020Infrared absorbance of vertically-aligned multi-walled CNT forest as a function of synthesis temperature and time19citations
  • 2020Soft, flexible and transparent graphene-based active spinal cord implants for optogenetic studiescitations
  • 2020Vertically-Aligned Multi-Walled Carbon Nano Tube Pillars with Various Diameters under Compression6citations
  • 2020Toward a Self-Sensing Piezoresistive Pressure Sensor for all-SiC Monolithic Integration22citations
  • 2019Towards an Active Graphene-PDMS Implantcitations
  • 2019Growth of multi-layered graphene on molybdenum catalyst by solid phase reaction with amorphous carbon5citations
  • 2018Effects of Conformal Nanoscale Coatings on Thermal Performance of Vertically Aligned Carbon Nanotubes21citations
  • 2018Wafer Level Through Polymer Optical Vias (TPOV) Enabling High Throughput of Optical Windows Manufacturingcitations

Places of action

Chart of shared publication
Vaseghi, Yas
1 / 2 shared
Shooshtari, Mostafa
2 / 2 shared
Pahlavan, Saeideh
1 / 2 shared
Rajati, Mahshid
1 / 2 shared
Zeijl, Henk Van
1 / 2 shared
Zhang, Guoqi
5 / 20 shared
Hu, Dong
1 / 1 shared
Schmidt-Ott, Andreas
1 / 2 shared
Ji, Xinrui
1 / 1 shared
Ginkel, Hendrik Joost Van
1 / 1 shared
Bakhshaee Babaroud, Nasim
1 / 1 shared
Weingärtner, Sebastian
2 / 2 shared
Palmar, Merlin
2 / 2 shared
Velea, Andrada Iulia
1 / 1 shared
Giagka, Vasiliki
4 / 20 shared
Serdijn, Wouter A.
3 / 8 shared
Vos, Frans M.
1 / 1 shared
Coletti, Chiara
2 / 3 shared
Babaroud, Nasim Bakhshaee
1 / 1 shared
Vos, Frans
1 / 1 shared
Velea, Andrada Lulia
1 / 1 shared
Van Ginkel, Hendrik Joost
1 / 1 shared
Sacco, Leandro
2 / 2 shared
Salehi, Alireza
1 / 2 shared
Hähnle, S.
1 / 2 shared
Thoen, David
1 / 10 shared
Karatsu, Kenichi
1 / 2 shared
Kouwenhoven, K.
1 / 3 shared
Murugesan, V.
1 / 3 shared
Baselmans, Jochem
1 / 6 shared
Endo, Akira
1 / 3 shared
Buijtendorp, B. T.
1 / 1 shared
Zhang, Guo Qi
1 / 2 shared
Wolffenbuttel, Reinoud
1 / 1 shared
Ahmadi, Majid
2 / 28 shared
Gheitaghy, Amir Mirza
1 / 1 shared
Ghaderi, Amir
1 / 3 shared
Velea, A.
1 / 3 shared
Mirzagheytaghi, Amir
1 / 1 shared
Poelma, R. H.
3 / 11 shared
Zeijl, H. W. Van
1 / 1 shared
Morana, Bruno
2 / 2 shared
Middelburg, Luke
1 / 1 shared
Wardhana, Gandhika K.
1 / 1 shared
Sarro, Pasqualina Maria
1 / 2 shared
Ricciardella, Filiberto
1 / 3 shared
Giesbers, A. J. M.
1 / 1 shared
Kurganova, Evgenia
1 / 1 shared
Sarro, Pasqualina
1 / 5 shared
Silvestri, Cinzia
1 / 1 shared
Riccio, Michele
1 / 3 shared
Irace, Andrea
1 / 3 shared
Jovic, Aleksandar
1 / 1 shared
Kropf, R.
1 / 2 shared
Gallouch, M.
1 / 2 shared
Huang, Z. Q.
1 / 2 shared
Koelink, M. H.
1 / 2 shared
Boschman, E.
1 / 5 shared
Chart of publication period
2023
2022
2020
2019
2018

Co-Authors (by relevance)

  • Vaseghi, Yas
  • Shooshtari, Mostafa
  • Pahlavan, Saeideh
  • Rajati, Mahshid
  • Zeijl, Henk Van
  • Zhang, Guoqi
  • Hu, Dong
  • Schmidt-Ott, Andreas
  • Ji, Xinrui
  • Ginkel, Hendrik Joost Van
  • Bakhshaee Babaroud, Nasim
  • Weingärtner, Sebastian
  • Palmar, Merlin
  • Velea, Andrada Iulia
  • Giagka, Vasiliki
  • Serdijn, Wouter A.
  • Vos, Frans M.
  • Coletti, Chiara
  • Babaroud, Nasim Bakhshaee
  • Vos, Frans
  • Velea, Andrada Lulia
  • Van Ginkel, Hendrik Joost
  • Sacco, Leandro
  • Salehi, Alireza
  • Hähnle, S.
  • Thoen, David
  • Karatsu, Kenichi
  • Kouwenhoven, K.
  • Murugesan, V.
  • Baselmans, Jochem
  • Endo, Akira
  • Buijtendorp, B. T.
  • Zhang, Guo Qi
  • Wolffenbuttel, Reinoud
  • Ahmadi, Majid
  • Gheitaghy, Amir Mirza
  • Ghaderi, Amir
  • Velea, A.
  • Mirzagheytaghi, Amir
  • Poelma, R. H.
  • Zeijl, H. W. Van
  • Morana, Bruno
  • Middelburg, Luke
  • Wardhana, Gandhika K.
  • Sarro, Pasqualina Maria
  • Ricciardella, Filiberto
  • Giesbers, A. J. M.
  • Kurganova, Evgenia
  • Sarro, Pasqualina
  • Silvestri, Cinzia
  • Riccio, Michele
  • Irace, Andrea
  • Jovic, Aleksandar
  • Kropf, R.
  • Gallouch, M.
  • Huang, Z. Q.
  • Koelink, M. H.
  • Boschman, E.
OrganizationsLocationPeople

document

Wafer Level Through Polymer Optical Vias (TPOV) Enabling High Throughput of Optical Windows Manufacturing

  • Zhang, Guoqi
  • Kropf, R.
  • Gallouch, M.
  • Huang, Z. Q.
  • Koelink, M. H.
  • Vollebregt, Sten
  • Poelma, R. H.
  • Boschman, E.
Abstract

This article shows the fabrication process and packaging of through polymer optical vias (TPOV). The TPOV enables encapsulation and packaging of silicon photonic systems using film assisted molding (FAM) and the creation of micron-sized through polymer optical vias. The optical vias are lithographically defined in thick film photo-resist (∼ 300 μm) and parallel processed on substrate level. Placing and connecting optical windows on individual chips using pick &amp; place is a difficult and time-consuming process because of the stringent requirements on alignment accuracy, cost and throughput. In this work we provide a solution to this problem by combining microfabrication technology with back-end film assisted molding technology for a new packaging approach for the integration of optical windows. As feasibility study we show through polymer optical windows on optical encoder Si photodiode arrays. The resulting microstructures are transparent in the spectrum of interest and hence serve as optical windows towards the substrate. Furthermore, our results show that the high aspect ratio (5:1) micro structure windows can be achieved and protected using FAM-technology. The optical through package windows are accurately defined (±5 μm accuracy due to mask limitations) and can significantly improve the throughput. The total process time of a single wafer with up to 1260 chips and 20160 windows, including lamination, exposure and development, would approximately take 1-1.5 hours.

Topics
  • impedance spectroscopy
  • microstructure
  • polymer
  • Silicon