Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Grafe, Juergen

  • Google
  • 2
  • 3
  • 22

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2013Microstructure investigation of Cu/SnAg solid-liquid interdiffusion interconnects by Electron Backscatter Diffraction8citations
  • 2012Effects of bonding pressure on quality of SLID interconnects14citations

Places of action

Chart of shared publication
Wolter, Klaus-Juergen
2 / 5 shared
Mueller, Maik
2 / 12 shared
Panchenko, Juliana
2 / 23 shared
Chart of publication period
2013
2012

Co-Authors (by relevance)

  • Wolter, Klaus-Juergen
  • Mueller, Maik
  • Panchenko, Juliana
OrganizationsLocationPeople

document

Effects of bonding pressure on quality of SLID interconnects

  • Wolter, Klaus-Juergen
  • Grafe, Juergen
  • Mueller, Maik
  • Panchenko, Juliana
Abstract

The investigation of the bonding pressure change on the different quality aspects of the solid-liquid interdiffusion (SLID) interconnects is presented. The stacks were produced by a flux-assisted bonding of two Si dies with an area array of square Cu/SnAg bumps on the bottom die and Cu bumps on the top die at approx. 250 °C. The bonding pressure was varied between 0 MPa, 0.35 MPa, 0.69 MPa, 1.04 MPa, 1.38 MPa, 1.73 MPa, 2.08 MPa, 2.42 MPa. Cross-sections of the stacks were analyzed by optical microscopy and scanning electron microscopy (SEM). Tilt, standoff height (SOH) variation, void fraction, interlayer thickness and Cu3Sn thickness were measured. It will be shown that increase of the bonding pressure can reduce the void fraction from 35.1 % (0 MPa) to 10.7 % (2.42 MPa) and decrease the interlayer thickness at the same time. Decrease of the interlayer thickness is accompanied by solder squeeze and increase of Cu3Sn thickness. Shear tests revealed an average shear strength of (81.3 ± 21.5) MPa for the produced samples. The analysis of the fracture surfaces with SEM revealed that the weakest interface is located between Cu6Sn5 and Cu3Sn intermetallic compounds (IMCs) close to the initial Cu bump.

Topics
  • impedance spectroscopy
  • surface
  • compound
  • scanning electron microscopy
  • strength
  • shear test
  • void
  • intermetallic
  • optical microscopy
  • interdiffusion