Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zhang, Ningxin

  • Google
  • 2
  • 8
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Model-Based Design of High Energy All-Solid-State Li Batteries with Hybrid Electrolytes10citations
  • 2019All-solid state batteries for space exploration3citations

Places of action

Chart of shared publication
Cistjakov, Walter
1 / 1 shared
Baakes, Florian
1 / 3 shared
Kühnelt, Helmut
1 / 4 shared
Krewer, Ulrike
1 / 13 shared
Toghyani, Somayeh
1 / 1 shared
Nestoridi, Maria
1 / 2 shared
Beutl, Alexander
1 / 4 shared
Jahn, Marcus
1 / 7 shared
Chart of publication period
2022
2019

Co-Authors (by relevance)

  • Cistjakov, Walter
  • Baakes, Florian
  • Kühnelt, Helmut
  • Krewer, Ulrike
  • Toghyani, Somayeh
  • Nestoridi, Maria
  • Beutl, Alexander
  • Jahn, Marcus
OrganizationsLocationPeople

document

All-solid state batteries for space exploration

  • Zhang, Ningxin
  • Nestoridi, Maria
  • Beutl, Alexander
  • Jahn, Marcus
Abstract

The paper reports the investigations performed in the course of the ESA TRP activity (Contract No. 4000123997/18/NL/HK) on the use of solid polymer electrolytes for safe lithium ion batteries for clean space. The objective is to develop 1Ah prototype pouch cells without using any volatile liquid component. The exchange of conventional, highly flammable electrolytes with solid Li + -conducting polymers significantly improves the electrochemical and thermal stability range of the battery cells. Thereby fragmentation events, and thus propagation of space debris, caused by battery malfunction can be mitigated. In the presented work, filled polymer electrolytes were investigated for potential use in all-solid-state lithium-ion batteries. The polyethylene oxide-based polymer phase was either mixed with a lithium-ion conducting glass-ceramic (active) or BaTiO 3 (passive) filler resulting in self-sustaining solid electrolyte membranes. Furthermore, carbon anodes and NMC622 cathodes were optimized to enable the assembly of full cells with enhanced safety properties.

Topics
  • impedance spectroscopy
  • polymer
  • Carbon
  • phase
  • glass
  • glass
  • Lithium
  • ceramic