People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ross, Glenn
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (35/35 displayed)
- 2024Scaling of piezoelectric in-plane NEMS : Towards nanoscale integration of AlN-based transducer on vertical sidewallscitations
- 2024Electromigration Reliability of Cu3Sn Microbumps for 3D Heterogeneous Integration
- 2024Metalorganic Chemical Vapor Deposition of AlN on High Degree Roughness Vertical Surfaces for MEMS Fabricationcitations
- 2024Thermal Boundary Conductance of Direct Bonded Aluminum Nitride to Silicon Interfacescitations
- 2024Investigative characterization of delamination at TiW-Cu interface in low-temperature bonded interconnectscitations
- 2023Impact of Inherent Design Limitations for Cu–Sn SLID Microbumps on Its Electromigration Reliability for 3D ICscitations
- 2023Achieving low-temperature wafer level bonding with Cu-Sn-In ternary at 150 °Ccitations
- 2023Co, In, and Co–In alloyed Cu6Sn5 interconnects: Microstructural and mechanical characteristicscitations
- 2023In-Plane AlN-based Actuator: Toward a New Generation of Piezoelectric MEMScitations
- 2022Investigation of the microstructural evolution and detachment of Co in contact with Cu–Sn electroplated silicon chips during solid-liquid interdiffusion bondingcitations
- 2022Unlocking the Potential of Piezoelectric Films Grown on Vertical Surfaces for Inertial MEMScitations
- 2022Finite element simulation of solid-liquid interdiffusion bonding process: Understanding process dependent thermomechanical stresscitations
- 2022Finite element simulation of solid-liquid interdiffusion bonding processcitations
- 2022Aluminium corrosion in power semiconductor devicescitations
- 2021Characterization of AlScN-based multilayer systems for piezoelectric micromachined ultrasound transducer (pMUT) fabricationcitations
- 2021Characterization of AlScN-based multilayer systems for piezoelectric micromachined ultrasound transducer (pMUT) fabricationcitations
- 2021Wafer Level Solid Liquid Interdiffusion Bondingcitations
- 2021Stability and residual stresses of sputtered wurtzite AlScN thin filmscitations
- 2021Characterization of AlScN-Based Multilayer Systems for Piezoelectric Micromachined Ultrasound Transducer (pMUT) Fabricationcitations
- 2021A humidity-induced novel failure mechanism in power semiconductor diodescitations
- 2021Low-temperature Metal Bonding for Optical Device Packagingcitations
- 2020The impact of residual stress on resonating piezoelectric devicescitations
- 2020The impact of residual stress on resonating piezoelectric devicescitations
- 2020MOCVD Al(Ga)N Insulator for Alternative Silicon-On-Insulator Structurecitations
- 2020Metalorganic chemical vapor deposition of aluminum nitride on vertical surfacescitations
- 2019Intermetallic Void Formation in Cu-Sn Micro-Connects
- 2019The Role of Ultrafine Crystalline Behavior and Trace Impurities in Copper on Intermetallic Void Formationcitations
- 2018Process Integration and Reliability of Wafer Level SLID Bonding for Poly-Si TSV capped MEMScitations
- 2018The effect of platinum contact metallization on Cu/Sn bondingcitations
- 2018Stability of Piezoelectric Al1-xScxN Thin Films
- 2017XRD and ToF-SIMS study of intermetallic void formation in Cu-Sn micro-connectscitations
- 2017Gigahertz scanning acoustic microscopy analysis of voids in Cu-Sn micro-connectscitations
- 2017Key parameters influencing Cu-Sn interfacial void formation
- 2016Void formation and its impact on Cu-Sn intermetallic compound formationcitations
- 2014Void formation in Cu-Sn SLID bonding for MEMScitations
Places of action
Organizations | Location | People |
---|
document
Key parameters influencing Cu-Sn interfacial void formation
Abstract
Recent trends in 3D integration and dimensional scaling technologies have attracted interest in micro-connects as a novel method for interconnection. Micro-connects, including small volume interconnects (or microbumps) and Solid Liquid Interdiffusion (SLID) bonds for Micro- or Nanoelectromechanical Systems (MEMS and NEMS) are functionally far superior compared with traditional large volume interconnects and enable novel integration techniques<br/>for the miniaturisation and diversification of complex integrated systems. As micro-connects have smaller volumes than traditional forms of interconnects, they become more susceptible to microstructural defects. Such defects can lead to the catastrophic and costly failures within complex integrated systems. This study of Cu-Sn micro-connects has resulted from the publishing of several papers on the reliability reduction with interfacial voiding cited as the root cause. Interfacial voids (often referred to as Kirkendall voids) form in micro-connects fabricated using electroplated Cu in contact with the low melting point metal Sn. A variety of Cu electroplating chemistries and current densities were used to assess the void formation characteristics and the resulting IMC growth rates. The variety of parameters is designed to assess the impacts on void formation. This data will enable electronic integration developers to better understand the reliability impacts and for manufactures to understand key parameters associated with void formation.