Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sugden, M.

  • Google
  • 1
  • 4
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2014Functionalised copper nanoparticles as catalysts for electroless plating7citations

Places of action

Chart of shared publication
Cobley, Andrew
1 / 38 shared
Graves, John
1 / 16 shared
Hutt, D. A.
1 / 6 shared
Litchfield, R. E.
1 / 1 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Cobley, Andrew
  • Graves, John
  • Hutt, D. A.
  • Litchfield, R. E.
OrganizationsLocationPeople

booksection

Functionalised copper nanoparticles as catalysts for electroless plating

  • Cobley, Andrew
  • Graves, John
  • Hutt, D. A.
  • Sugden, M.
  • Litchfield, R. E.
Abstract

Electroless copper plating of insulating substrates, such as printed circuit boards, typically requires the pre-deposition of a catalyst layer onto the surface to initiate the chemical reactions. Pd/Sn based catalysts are widely used, but carry a high cost and in many cases require specialist pre-treatment of the substrate to achieve good adhesion. In this work, functionalised copper nanoparticles have been investigated as alternative catalysts for electroless deposition. Commercially available copper nanoparticles were functionalised with different organic molecules and their functionalisation was confirmed with X-ray photoelectron spectroscopy. The ability of these particles to act as a catalyst was demonstrated, however their effectiveness was found to depend on the nature of the organic molecules that were used in the functionalisation. Furthermore, significant variability was found between batches of samples in both the particle dispersion and attachment to the substrate surface, which affected the reproducibility of the coverage and adhesion of the subsequent electroless plating, for which further work is required to understand these effects

Topics
  • nanoparticle
  • Deposition
  • impedance spectroscopy
  • dispersion
  • surface
  • x-ray photoelectron spectroscopy
  • copper