Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Potter, Richard

  • Google
  • 5
  • 33
  • 94

University of Liverpool

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2021Demonstration of a Fast, Low-Voltage, III-V Semiconductor, Non-Volatile Memory1citations
  • 2020Band line-up investigation of atomic layer deposited TiAlO and GaAlO on GaN6citations
  • 2017Atomic Layer Deposition of a Silver Nanolayer on Advanced Titanium Orthopedic Implants Inhibits Bacterial Colonization and Supports Vascularized de Novo Bone Ingrowth42citations
  • 2016Comparative analysis of the effects of tantalum doping and annealing on atomic layer deposited (Ta2O5)<i>x</i>(Al2O3)1−<i>x</i> as potential gate dielectrics for GaN/AlxGa1−xN/GaN high electron mobility transistors10citations
  • 2016Self-limiting atomic layer deposition of conformal nanostructured silver films35citations

Places of action

Chart of shared publication
Lane, Dominic
1 / 2 shared
Hayne, Manus
1 / 14 shared
Hodgson, Peter
1 / 3 shared
Partida-Manzanera, Teresa
1 / 1 shared
Mahapatra, Rajat
1 / 4 shared
Jones, Leanne A. H.
1 / 3 shared
Mitrovic, Ivona Z.
1 / 4 shared
Thayne, Iain G.
1 / 4 shared
Das, Partha
1 / 2 shared
Dhanak, Vinod R.
1 / 5 shared
Chalker, Paul R.
1 / 9 shared
Cho, Sung-Jin
1 / 2 shared
Roberts, Joseph W.
1 / 2 shared
Gibbon, James T.
1 / 3 shared
Mitchel, Christopher A.
1 / 1 shared
Lee, Peter D.
1 / 43 shared
Jones, Eric
1 / 2 shared
Geng, Hua
1 / 3 shared
Devlin-Mullin, Aine
1 / 1 shared
Sutcliffe, Chris
1 / 3 shared
Hunt, John A.
1 / 4 shared
Todd, Naomi M.
1 / 2 shared
Golrokhi, Zahra
2 / 3 shared
Bhat, T. N.
1 / 1 shared
Zhang, Z.
1 / 62 shared
Tripathy, S.
1 / 1 shared
Tan, H. R.
1 / 1 shared
Dolmanan, S. B.
1 / 1 shared
Manzanera, Teresa Partida
1 / 2 shared
Sedghi, N.
1 / 2 shared
Roberts, Joseph
1 / 12 shared
Sutcliffe, Christopher
1 / 1 shared
Chalker, Sophia
1 / 1 shared
Chart of publication period
2021
2020
2017
2016

Co-Authors (by relevance)

  • Lane, Dominic
  • Hayne, Manus
  • Hodgson, Peter
  • Partida-Manzanera, Teresa
  • Mahapatra, Rajat
  • Jones, Leanne A. H.
  • Mitrovic, Ivona Z.
  • Thayne, Iain G.
  • Das, Partha
  • Dhanak, Vinod R.
  • Chalker, Paul R.
  • Cho, Sung-Jin
  • Roberts, Joseph W.
  • Gibbon, James T.
  • Mitchel, Christopher A.
  • Lee, Peter D.
  • Jones, Eric
  • Geng, Hua
  • Devlin-Mullin, Aine
  • Sutcliffe, Chris
  • Hunt, John A.
  • Todd, Naomi M.
  • Golrokhi, Zahra
  • Bhat, T. N.
  • Zhang, Z.
  • Tripathy, S.
  • Tan, H. R.
  • Dolmanan, S. B.
  • Manzanera, Teresa Partida
  • Sedghi, N.
  • Roberts, Joseph
  • Sutcliffe, Christopher
  • Chalker, Sophia
OrganizationsLocationPeople

document

Demonstration of a Fast, Low-Voltage, III-V Semiconductor, Non-Volatile Memory

  • Potter, Richard
  • Lane, Dominic
  • Hayne, Manus
  • Hodgson, Peter
Abstract

ULTRARAM™ is a III-V semiconductor memory technology which exploits resonant tunneling to allow ultra-low-energy memory logic switching (per unit area), whilst retaining non-volatility. Single-cell memories developed on GaAs substrates with a revised design and atomic-layer-deposition Al 2 O 3 gate dielectric demonstrate significant improvements compared to prior prototypes. Floating-gate (FG) memories with 20-μm gate length show 0/1 state contrast from 2.5-V program-read-erase-read (P/E) cycles with 500-μs pulse duration, which would scale to sub-ns switching speed at 20-nm node. Nonvolatility is confirmed by memory retention tests of 4×10 3 s with both 0 and 1 states completely invariant. Single cells demonstrate promising endurance results, undergoing 10 4 cycles without degradation. P/E cycling and disturbance tests are performed using half-voltages (±1.25 V), validating the high-density random access memory (RAM) architecture proposed previously. Finally, memory logic is retained after an equivalent of &gt;10 5 P/E disturbances.

Topics
  • Deposition
  • density
  • impedance spectroscopy
  • random
  • III-V semiconductor