Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Höhne, Robert

  • Google
  • 2
  • 6
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Feasibility Investigation of Machine Learning for Electronic Reliability Analysis using FEA2citations
  • 2023Improving the Vibration Reliability of SAC Flip-Chip Interconnects Using Underfill3citations

Places of action

Chart of shared publication
Yichen, Qi
1 / 1 shared
Albrecht, Oliver
1 / 1 shared
Meier, Karsten
2 / 17 shared
Bock, Karlheinz
2 / 43 shared
Lehmann, Marco
1 / 1 shared
Reim, Michael
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Yichen, Qi
  • Albrecht, Oliver
  • Meier, Karsten
  • Bock, Karlheinz
  • Lehmann, Marco
  • Reim, Michael
OrganizationsLocationPeople

document

Feasibility Investigation of Machine Learning for Electronic Reliability Analysis using FEA

  • Yichen, Qi
  • Albrecht, Oliver
  • Meier, Karsten
  • Höhne, Robert
  • Bock, Karlheinz
Abstract

<p>In this paper, a machine learning framework and model is presented for predicting the vibration reliability of solder joints using finite element analysis. Though some models covering temperature cycling conditions are known, mechanical loads like vibration and shock are rarely covered. The proposed model predicts the elastic strains of the solder joints under isothermal harmonic vibration conditions based on temperature, amplitude and design data, e.g. chip thickness and solder joint diameter. The finite element model used for data synthesis is based on an already established specimen design specifically dedicated to investigate Flip-Chip components under combined vibration and TC loads. Harmonic analyses were carried out using a quarter model of the specimen. Equivalent elastic strain was extracted following a dynamic selection of the highest stressed elements per solder joint. A standard feed-forward artificial neural network was used due to its simplicity to keep overall complexity and computational efforts low. The machine learning framework was investigated in terms of model complexity, performance and required training data. Additionally, its resilience against noise, typically present by acquiring experimental data, was studied. Since all data sets were obtained using finite element analyses, artificial Gaussian noise is added to the data sets to strengthen the models robustness. The prediction results show that the model achieves high accuracy (MSE = 2.73*10-5) while also keeping the computational time low. Since only one output feature is used, a less complex framework can be used to accurately forecast the equivalent elastic strain.</p>

Topics
  • impedance spectroscopy
  • laser emission spectroscopy
  • finite element analysis
  • machine learning