People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Giagka, Vasiliki
Fraunhofer Institute for Reliability and Microintegration
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2023Non-monolithic fabrication of thin-film microelectrode arrays on PMUT transducers as a bimodal neuroscientific investigation toolcitations
- 2023Non-monolithic fabrication of thin-film microelectrode arrays on PMUT transducers as a bimodal neuroscientific investigation toolcitations
- 2023A Comparative Study of Si3N4 and Al2O3 as Dielectric Materials for Pre-Charged Collapse-Mode CMUTscitations
- 2023An Ultrasonically Powered System Using an AlN PMUT Receiver for Delivering Instantaneous mW-Range DC Power to Biomedical Implantscitations
- 2022Thin Film Encapsulation for LCP-Based Flexible Bioelectronic Implants: Comparison of Different Coating Materials Using Test Methodologies for Life-Time Estimationcitations
- 2022Thin Film Encapsulation for LCP-Based Flexible Bioelectronic Implants: Comparison of Different Coating Materials Using Test Methodologies for Life-Time Estimationcitations
- 2022Multilayer CVD graphene electrodes using a transfer-free process for the next generation of optically transparent and MRI-compatible neural interfacescitations
- 2022Multilayer CVD graphene electrodes using a transfer-free process for the next generation of optically transparent and MRI-compatible neural interfacescitations
- 2022Thin Film Encapsulation for LCP-Based Flexible Bioelectronic Implantscitations
- 2021Silicone encapsulation of thin-film SiOx , SiOx Ny and SiC for modern electronic medical implantscitations
- 2021Silicone encapsulation of thin-film SiO x , SiO x N y and SiC for modern electronic medical implants: A comparative long-term ageing studycitations
- 2021Silicone encapsulation of thin-film SiOx, SiOxNy and SiC for modern electronic medical implants: a comparative long-term ageing studycitations
- 2021Silicone encapsulation of thin-film SiOx, SiOxNy and SiC for modern electronic medical implants
- 2020Soft, flexible and transparent graphene-based active spinal cord implants for optogenetic studies
- 2020Long-term encapsulation of platinum metallization using a HfO2 ALD - PDMS bilayer for non-hermetic active implantscitations
- 2019Effect of Signals on the Encapsulation Performance of Parylene Coated Platinum Tracks for Active Medical Implantscitations
- 2019The influence of soft encapsulation materials on the wireless power transfer links efficiency
- 2019Towards an Active Graphene-PDMS Implant
- 2018MEMS-Electronics Integration 2: A Smart Temperature Sensor for an Organ-on-a-chip Platform
- 2015Flexible active electrode arrays with ASICs that fit inside the rat's spinal canalcitations
Places of action
Organizations | Location | People |
---|
conferencepaper
Long-term encapsulation of platinum metallization using a HfO2 ALD - PDMS bilayer for non-hermetic active implants
Abstract
S.467-472 ; In this work, we investigate the insulating performance of an atomic layer deposited (ALD) HfO2 - polymer bilayer for platinum (Pt) metallization. As test vehicles, Pt interdigitated comb structures (IDC) were designed and fabricated on SiO2/Si substrates. The IDCs were first coated with a 100 nm thin HfO2 ALD layer. A group of samples was further encapsulated with a low-viscosity biocompatible polydimethylsiloxane (PDMS) which resulted in an HFO2-PDMS bilayer. All samples were soaked in phosphate buffered saline for 450 days at room temperature. Evaluation of the coatings included monthly optical inspection and electrochemical impedance spectrometry. For ALD-only coated IDC structures, impedance results right after submersion in saline indicated the presence of defects in the layer. Long-term impedance recordings showed a slight drop, indicating water ingress through the defects, further exposing the metal to saline. For the HfO2-PDMS encapsulated samples, on the other hand, stable impedance results were recorded over the duration of the soak study. This suggests the excellent properties of low-viscosity PDMS both in filling the defects of the ALD layer and in maintaining a long-term underwater adhesion to HfO2. The results from this investigation, therefore, propose a new encapsulation method based on HfO2-PDMS bilayer for long-term packaging of active implants incorporating Pt metallization.