Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fritsche, David

  • Google
  • 1
  • 7
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Interconnect Technology Development for 180GHz Wireless mm-Wave System-in-Foil Transceivers7citations

Places of action

Chart of shared publication
Nieweglowski, Krzysztof
1 / 10 shared
Seiler, Patrick
1 / 4 shared
Ellinger, Frank
1 / 5 shared
Lüngen, Sebastian
1 / 1 shared
Bock, Karlheinz
1 / 43 shared
Carta, Corrado
1 / 1 shared
Plettemeier, Dirk
1 / 20 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Nieweglowski, Krzysztof
  • Seiler, Patrick
  • Ellinger, Frank
  • Lüngen, Sebastian
  • Bock, Karlheinz
  • Carta, Corrado
  • Plettemeier, Dirk
OrganizationsLocationPeople

document

Interconnect Technology Development for 180GHz Wireless mm-Wave System-in-Foil Transceivers

  • Nieweglowski, Krzysztof
  • Seiler, Patrick
  • Ellinger, Frank
  • Lüngen, Sebastian
  • Fritsche, David
  • Bock, Karlheinz
  • Carta, Corrado
  • Plettemeier, Dirk
Abstract

In this work, a polyimide (PI) foil-based wireless transceiver, which can be placed on the top of each node chip stack, is proposed. The transceivers with Butler matrix (BM) steered antenna arrays enable directed links from each node on one PCB towards any other node on the neighboring board in the rack. These passive components can be integrated into the foil whereas the active components (mm-wave ICs - MMICs) fabricated in SiGe-technology have to be connected with low parasitic, matched (wave impedance) interconnects. First the development of fabrication of low-loss transmission line structures on PI-foils will be described. The technology is based on foils with 50μm PI-thickness with Cr/Cu seed metallization and galvanic thickened Au layer. This allows for precise definition of coplanar transmission lines with low roughness (RMS roughness of 20-530nm). The measurements of characteristic parameters show good agreement with simulated data - the deviation of parasitic components (L and C) is below than 10%. A transmission loss of about 0.5 dB/cm at 60 GHz and about 1 dB/cm at 200 GHz has been measured. These substrates have been used for flip-chip assembly of chip components in order to characterize the performance of FC-interconnect at frequencies up to 220 GHz. For this analysis test-chips with transmission lines fabricated in a 130 nm SiGe-BiCMOS technology have been used. In order to mount these chips with Al pad finish on the PI-foil substrates Au studbumps with reduced size (50μm diameter on foot and 30μm height) and thermosonic flip-chip bonding have been used. From the measurements of FC bonded test chips with μ-strip lines on the PI-foils a FC-interconnect loss of about 0.28 ± 0.05 dB per bump at 60 GHz and of about 0.73 ± 0.14 dB per bump at 200 GHz could be derived.

Topics
  • impedance spectroscopy
  • ion chromatography