People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mäntysalo, Matti
Tampere University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2025Enhancing specific capacitance and energy density in printed supercapacitors : The role of activated wood carbon and electrolyte dynamicscitations
- 2024Flexible screen-printed supercapacitors with asymmetric PANI/CDC–AC electrodes and aqueous electrolytecitations
- 2024Recyclability of novel energy harvesting and storage technologies for IoT and wireless sensor networkscitations
- 2024Monolithic supercapacitors prepared by roll-to-roll screen printingcitations
- 2023Wear reliability and failure mechanism of inkjet-printed conductors on paperboard substratecitations
- 2023Screen printable PANI/carbide-derived carbon supercapacitor electrode ink with chitosan bindercitations
- 2022Flexible Polymer Rectifying Diode on Plastic Foils with MoO3Hole Injection
- 2020Drying-Mediated Self-Assembly of Graphene for Inkjet Printing of High-Rate Micro-supercapacitorscitations
- 2020Drying-Mediated Self-Assembly of Graphene for Inkjet Printing of High-Rate Micro-supercapacitorscitations
- 2020Design of Thin, High Permittivity, Multiband, Monopole-Like Antennas
- 2019A Fully Printed Ultra-Thin Charge Amplifier for On-Skin Biosignal Measurementscitations
- 2018High-resolution E-jet Enhanced MEMS Packaging
- 2017Inkjet printing technology for increasing the I/O density of 3D TSV interposerscitations
- 2017Combination of E-jet and inkjet printing for additive fabrication of multilayer high-density RDL of silicon interposercitations
- 2016Fabrication and electrical characterization of partially metallized vias fabricated by inkjetcitations
- 2015Metallization of high density TSVs using super inkjet technologycitations
- 2010Novel Approach on Application Manufacturing Using Inkjet Printing, Laser Ablation and New Polymer Substrate
- 2009Sintering of printed nanoparticle structures using laser treatment
Places of action
Organizations | Location | People |
---|
conferencepaper
Metallization of high density TSVs using super inkjet technology
Abstract
Filling or metallization of the through silicon vias (TSVs) with the conductive materials to act as vertical electrical interconnections through the wafers, is one of the key steps in the microelectromechanical systems (MEMS) wafer level packaging. Previously, metallization of the vias with inkjet printing technology is demonstrated. However, little attention has been paid to the possibility of metallization of high density TSVs; because drop diameters of conventional inkjet printers are larger than the top diameter of thin vias. Therefore, in this work we investigate the potential of super inkjet (SIJ) technology with 0.1 femtoliter droplets to metallize the vias with top diameter of 23 µm using three different silver nanoparticle inks. The filling processes are monitored by the observation camera and after the sintering, cross-sections of the vias are studied by the optical and scanning electron microscope (SEM). ; Peer reviewed