Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Berger, Paul R.

  • Google
  • 16
  • 67
  • 211

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (16/16 displayed)

  • 2022Flexible Polymer Rectifying Diode on Plastic Foils with MoO3Hole Injectioncitations
  • 2021Selective atomic layer deposition on flexible polymeric substrates employing a polyimide adhesive as a physical mask6citations
  • 2021Selective atomic layer deposition on flexible polymeric substrates employing a polyimide adhesive as a physical mask6citations
  • 2020RTD Light Emission around 1550 nm with IQE up to 6% at 300 K3citations
  • 20190.7-GHz Solution-Processed Indium Oxide Rectifying Diodes10citations
  • 2019930 kA/cm2 peak tunneling current density in GaN/AlN resonant tunneling diodes grown on MOCVD GaN-on-sapphire template20citations
  • 2017High performance, Low-voltage, Solution-processable Indium Oxide Thin Film Transistors using Anodic Al2O3 Gate Dielectric.citations
  • 2017Negative differential resistance in polymer tunnel diodes using atomic layer deposited, TiO2 tunneling barriers at various deposition temperatures7citations
  • 2012200-mm CVD grown Si/SiGe resonant interband tunnel diodes optimized for high peak-to-valley current ratioscitations
  • 2011Interfacial design and structure of protein/polymer films on oxidized AlGaN surfaces9citations
  • 2010Plasma-polymerized multistacked bipolar gate dielectric for organic thin-film transistors15citations
  • 20084.8% efficient poly(3-hexylthiophene)-fullerene derivative (1:0.8) bulk heterojunction photovoltaic devices with plasma treated Ag Ox /indium tin oxide anode modification49citations
  • 2008Enhanced emission using thin Li-halide cathodic interlayers for improved injection into poly(p-phenylene vinylene) derivative PLEDs5citations
  • 2008Plasma-polymerized multistacked organic bipolar films25citations
  • 2006Low sidewall damage plasma etching using ICP-RIE with HBr chemistry of Si/SiGe resonant interband tunnel diodes6citations
  • 2000Current-voltage characteristics of high current density silicon Esaki diodes grown by molecular beam epitaxy and the influence of thermal annealing50citations

Places of action

Chart of shared publication
Rafi, Nazmul
1 / 1 shared
Li, Miao
2 / 3 shared
Mäntysalo, Matti
1 / 18 shared
Lupo, Donald
5 / 11 shared
Rokaya, Chakra
3 / 4 shared
Anam, Rafi Md Nazmul
1 / 1 shared
Ruhanen, Aleksi
2 / 2 shared
Forouzmehr, Matin
2 / 2 shared
Lahtonen, Kimmo
2 / 38 shared
Honkanen, Mari Hetti
2 / 59 shared
Zambou, Serges
2 / 3 shared
Honkanen, Mari
1 / 22 shared
Nazmul Anam, Rafi Md
1 / 1 shared
Brown, E. R.
1 / 2 shared
Growden, T. A.
1 / 1 shared
Fakhimi, P.
1 / 1 shared
Zhang, W. D.
1 / 1 shared
Schramm, Andreas
1 / 3 shared
Liu, Xianjie
1 / 23 shared
Fahlman, Mats
1 / 21 shared
Growden, Tyler A.
1 / 1 shared
Cornuelle, Evan M.
1 / 1 shared
Meyer, David J.
1 / 2 shared
Zhang, Weidong
1 / 2 shared
Daulton, Jeffrey W.
1 / 1 shared
Molnar, Richard
1 / 1 shared
Brown, Elliott R.
1 / 2 shared
Whitaker, Logan M.
1 / 1 shared
Storm, David F.
1 / 2 shared
Bhalerao, Sagar
1 / 1 shared
Guttman, Jeremy J.
1 / 1 shared
Chambers, Conner B.
1 / 1 shared
Villagracia, Al Rey
1 / 1 shared
Santos, Gil Nonato C.
1 / 1 shared
Loo, Roger
1 / 17 shared
Vandervorst, Wilfried
1 / 17 shared
Ramesh, Anisha
1 / 1 shared
Douhard, Bastien
1 / 4 shared
Anisha, R.
1 / 1 shared
Wen, Xuejin
1 / 1 shared
Nicholson, Theodore R.
1 / 1 shared
Casal, Patricia
1 / 1 shared
Kwak, Kwang J.
1 / 1 shared
Wu, Hao Hsuan
1 / 1 shared
Gupta, Samit K.
1 / 1 shared
Lee, Stephen Craig
1 / 1 shared
Bhushan, Bharat
1 / 8 shared
Lu, Wu
1 / 1 shared
Brillson, Leonard J.
1 / 3 shared
Bhattacharyya, Dhiman
2 / 2 shared
Yoon, Woo-Jun
1 / 1 shared
Timmons, Richard B.
2 / 2 shared
Yoon, Woo Jun
3 / 3 shared
Olmon, Robert L.
1 / 1 shared
Orlove, Scott B.
1 / 1 shared
Chung, S. Y.
1 / 1 shared
Thompson, P. E.
1 / 1 shared
Yu, R.
1 / 5 shared
Park, S. Y.
1 / 5 shared
Seabaugh, Alan C.
1 / 1 shared
Guedj, C.
1 / 3 shared
Kolodzey, James
1 / 1 shared
Adam, Thomas N.
1 / 1 shared
Troeger, Ralph T.
1 / 1 shared
Rommel, Scan L.
1 / 1 shared
Dashiell, Michael W.
1 / 1 shared
Lake, R.
1 / 2 shared
Chart of publication period
2022
2021
2020
2019
2017
2012
2011
2010
2008
2006
2000

Co-Authors (by relevance)

  • Rafi, Nazmul
  • Li, Miao
  • Mäntysalo, Matti
  • Lupo, Donald
  • Rokaya, Chakra
  • Anam, Rafi Md Nazmul
  • Ruhanen, Aleksi
  • Forouzmehr, Matin
  • Lahtonen, Kimmo
  • Honkanen, Mari Hetti
  • Zambou, Serges
  • Honkanen, Mari
  • Nazmul Anam, Rafi Md
  • Brown, E. R.
  • Growden, T. A.
  • Fakhimi, P.
  • Zhang, W. D.
  • Schramm, Andreas
  • Liu, Xianjie
  • Fahlman, Mats
  • Growden, Tyler A.
  • Cornuelle, Evan M.
  • Meyer, David J.
  • Zhang, Weidong
  • Daulton, Jeffrey W.
  • Molnar, Richard
  • Brown, Elliott R.
  • Whitaker, Logan M.
  • Storm, David F.
  • Bhalerao, Sagar
  • Guttman, Jeremy J.
  • Chambers, Conner B.
  • Villagracia, Al Rey
  • Santos, Gil Nonato C.
  • Loo, Roger
  • Vandervorst, Wilfried
  • Ramesh, Anisha
  • Douhard, Bastien
  • Anisha, R.
  • Wen, Xuejin
  • Nicholson, Theodore R.
  • Casal, Patricia
  • Kwak, Kwang J.
  • Wu, Hao Hsuan
  • Gupta, Samit K.
  • Lee, Stephen Craig
  • Bhushan, Bharat
  • Lu, Wu
  • Brillson, Leonard J.
  • Bhattacharyya, Dhiman
  • Yoon, Woo-Jun
  • Timmons, Richard B.
  • Yoon, Woo Jun
  • Olmon, Robert L.
  • Orlove, Scott B.
  • Chung, S. Y.
  • Thompson, P. E.
  • Yu, R.
  • Park, S. Y.
  • Seabaugh, Alan C.
  • Guedj, C.
  • Kolodzey, James
  • Adam, Thomas N.
  • Troeger, Ralph T.
  • Rommel, Scan L.
  • Dashiell, Michael W.
  • Lake, R.
OrganizationsLocationPeople

document

RTD Light Emission around 1550 nm with IQE up to 6% at 300 K

  • Brown, E. R.
  • Growden, T. A.
  • Fakhimi, P.
  • Zhang, W. D.
  • Berger, Paul R.
Abstract

<p>Resonant tunneling diodes (RTDs) have come full-circle in the past 10 years after their demonstration in the early 1990s as the fastest room-temperature semiconductor oscillator, displaying experimental results up to 712 GHz and f max values exceeding 1.0 THz [1]. Now the RTD is once again the preeminent electronic oscillator above 1.0 THz and is being implemented as a coherent source [2] and a self-oscillating mixer [3] , amongst other applications. This paper concerns RTD electroluminescence - an effect that has been studied very little in the past 30+ years of RTD development, and not at room temperature. We present experiments and modeling of an n-type In 0.53Ga 0.47As/AlAs double-barrier RTD operating as a cross-gap light emitter at 300K. The MBE-growth stack is shown in Fig. 1(a). A 15-μm-diam-mesa device was defined by standard planar processing including a top annular ohmic contact with a 5-μm-diam pinhole in the center to couple out enough of the internal emission for accurate free-space power measurements [4]. The emission spectra have the behavior displayed in Fig. 1(b) , parameterized by bias voltage (V B ). The long wavelength emission edge is at λ = 1684 nm - close to the In 0.53 Ga 0. 47 As bandgap energy of U g ≈ 0.75 eV at 300 K. The spectral peaks for V B = 2.8 and 3.0 V both occur around λ = 1550 nm (hv = 0.75 eV), so blue-shifted relative to the peak of the "ideal", bulk InGaAs emission spectrum shown in Fig. 1(b) [5]. These results are consistent with the model displayed in Fig. 1(c) , whereby the broad emission peak is attributed to the radiative recombination between electrons accumulated on the emitter side, and holes generated on the emitter side by interband tunneling with current density J interr. The blue-shifted main peak is attributed to the quantum-size effect on the emitter side, which creates a radiative recombination rate R N, 2 comparable to the band-edge cross-gap rate R N, 1. Further support for this model is provided by the shorter wavelength and weaker emission peak shown in Fig. 1(b) around λ = 1148 nm. Our quantum mechanical calculations attribute this to radiative recombination R R, 3 in the RTD quantum well between the electron ground-state level E 1, e , and the hole level E 1, h.</p>

Topics
  • density
  • impedance spectroscopy
  • experiment
  • semiconductor
  • current density