Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lophitis, Neophytos

  • Google
  • 3
  • 13
  • 36

University of Nottingham

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 20213C-SiC-on-Si MOSFETs: Overcoming Material Technology Limitations6citations
  • 2019Retrograde p-well for 10kV-class SiC IGBTs28citations
  • 2019Viable 3C-SiC-on-Si MOSFET design disrupting current Material Technology Limitations2citations

Places of action

Chart of shared publication
Li, Fan
2 / 7 shared
Perkins, Samuel
2 / 2 shared
Antoniou, Marina
2 / 3 shared
Jennings, Mike R.
1 / 1 shared
Arvanitopoulos, Anastasios
2 / 2 shared
Gyftakis, Konstantinos
1 / 1 shared
Trajkovic, Tatjana
1 / 1 shared
Udrea, Florin
1 / 4 shared
Tiwari, Amit K.
1 / 1 shared
Antoniou, M.
1 / 3 shared
Gyftakis, Konstantinos N.
1 / 1 shared
Jennings, M. R.
1 / 4 shared
Perkins, S.
1 / 1 shared
Chart of publication period
2021
2019

Co-Authors (by relevance)

  • Li, Fan
  • Perkins, Samuel
  • Antoniou, Marina
  • Jennings, Mike R.
  • Arvanitopoulos, Anastasios
  • Gyftakis, Konstantinos
  • Trajkovic, Tatjana
  • Udrea, Florin
  • Tiwari, Amit K.
  • Antoniou, M.
  • Gyftakis, Konstantinos N.
  • Jennings, M. R.
  • Perkins, S.
OrganizationsLocationPeople

document

Viable 3C-SiC-on-Si MOSFET design disrupting current Material Technology Limitations

  • Antoniou, M.
  • Lophitis, Neophytos
  • Li, Fan
  • Gyftakis, Konstantinos N.
  • Jennings, M. R.
  • Perkins, S.
  • Arvanitopoulos, Anastasios
Abstract

The cubic polytype (3C-) of Silicon Carbide (SiC) is an emerging semiconductor technology for power devices. The featured isotropic material properties along with the Wide Band Gap (WBG) characteristics make it an excellent choice for power Metal Oxide Semiconductor Field Effect Transistors (MOSFETs). Nonetheless, material related limitations originate from the advantageous fact that 3C-SiC can be grown on Silicon (Si) wafers. One of these major limitations is an almost negligible activation of the p-type dopants after ion implantation because the annealing has to take place at relatively low temperatures. In this paper, a novel process flow for a vertical 3C-SiC-on-Si MOSFET is presentedto overcome the difficulties that currently exist in obtaining a p-body region through implantation. The proposed design has been accurately simulated with Technology Computer Aided Design (TCAD) process and device software and a comparison is performed with the conventional SiC MOSFET design. Thesimulated output characteristics demonstrated a reduced onresistance and at the same time it is shown that the blocking capability can be maintained to the same level. The promising performance of the novel design discussed in this paper ispotentially the solution needed and a huge step towards the realisation of 3C-SiC-on-Si MOSFETs with commercially grated characteristics.

Topics
  • impedance spectroscopy
  • semiconductor
  • carbide
  • Silicon
  • annealing
  • activation
  • isotropic