Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jamieson, David

  • Google
  • 2
  • 6
  • 0

Northumbria University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020“I agree to being socially quantified”citations
  • 2018Isotopically Pure Silcon-28 Whispering Gallery Mode Resonatorscitations

Places of action

Chart of shared publication
Wilson, Rob
1 / 1 shared
Martin, Mike
1 / 1 shared
Tobar, Michael
1 / 14 shared
Creedon, Daniel
1 / 4 shared
Johnson, Brett C.
1 / 5 shared
Bourhill, Jeremy
1 / 6 shared
Chart of publication period
2020
2018

Co-Authors (by relevance)

  • Wilson, Rob
  • Martin, Mike
  • Tobar, Michael
  • Creedon, Daniel
  • Johnson, Brett C.
  • Bourhill, Jeremy
OrganizationsLocationPeople

document

Isotopically Pure Silcon-28 Whispering Gallery Mode Resonators

  • Tobar, Michael
  • Creedon, Daniel
  • Johnson, Brett C.
  • Jamieson, David
  • Bourhill, Jeremy
Abstract

<p>Single crystal isotopically pure 28Si cylindrical Whispering Gallery (WG) mode resonators have been machined from a rod of isotopically pure crystal. Before machining, the rod was loaded into a cavity with the best Bragg confined modes exhibiting Q-factors above a million for frequencies between 10 and 15 GHz. Electron Spin Resonance spectroscopy revealed a very narrow linewidth spin transition, with g-factor of 1.995±0.008. Analysis determined an upper limit to the linewidth of 7 kHz and a concentration of less than 10<sup>11</sup> spins/cm<sup>3</sup> (10 parts per trillion). After machining into WG mode resonators, the measured frequencies of the fundamental mode families were used to determine the relative permittivity of the material near 4 K and 20 mK to be 11.488±0.024, with the precision limited only by the dimensional accuracy of the resonator. However, the Q-factors were degraded to below 40,000. Raman spectroscopy revealed strain induced broadening on the radial surface of the crystal as a result of the machining. After an acid clean and etch, followed by annealing, the surface damage was repaired. Subsequently, high Q-factors were also restored. The next step will be to purposefully implant ions to try and realise narrow linewidth spin ensembles with clock transitions, which will couple to high-Q WG modes inside the crystal.</p>

Topics
  • surface
  • single crystal
  • dielectric constant
  • laser emission spectroscopy
  • electron spin resonance spectroscopy
  • annealing
  • Raman spectroscopy