Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Poulvellarie, Nicolas

  • Google
  • 1
  • 12
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Gallium phosphide transfer printing for integrated nonlinear photonicscitations

Places of action

Chart of shared publication
Sagnes, Isabelle
1 / 704 shared
Leo, Francois
1 / 7 shared
Roelkens, Gunther
1 / 7 shared
Pantzas, Konstantinos
1 / 15 shared
Kuyken, Bart
1 / 6 shared
Billet, Maximilien
1 / 3 shared
Léger, Yoan
1 / 31 shared
Beeck, Camiel Op De
1 / 1 shared
Beaudoin, Gregoire
1 / 6 shared
Reis, Luis
1 / 6 shared
Cornet, Charles
1 / 61 shared
Raineri, Fabrice
1 / 6 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Sagnes, Isabelle
  • Leo, Francois
  • Roelkens, Gunther
  • Pantzas, Konstantinos
  • Kuyken, Bart
  • Billet, Maximilien
  • Léger, Yoan
  • Beeck, Camiel Op De
  • Beaudoin, Gregoire
  • Reis, Luis
  • Cornet, Charles
  • Raineri, Fabrice
OrganizationsLocationPeople

document

Gallium phosphide transfer printing for integrated nonlinear photonics

  • Sagnes, Isabelle
  • Poulvellarie, Nicolas
  • Leo, Francois
  • Roelkens, Gunther
  • Pantzas, Konstantinos
  • Kuyken, Bart
  • Billet, Maximilien
  • Léger, Yoan
  • Beeck, Camiel Op De
  • Beaudoin, Gregoire
  • Reis, Luis
  • Cornet, Charles
  • Raineri, Fabrice
Abstract

Integrated nonlinear photonics has drawn an increased interest as it provides scalable, compact, and low cost solutions for a large range of applications. Indeed, the high confinement of the light in integrated waveguides allows for enhanced nonlinear effects. However, mature highly nonlinear platforms such as silicon-on-insulator (SOI) circuits suffer from nonlinear losses at telecom wavelengths caused by two-photon absorption. Moreover, the platform lacks a second order nonlinear susceptibility, which is not the case for wide bandgap III-V semiconductors. Recently, gallium phosphide-on-insulator (GaP-OI) has been proposed as an efficient platform for second and third order nonlinear applications and last year we demonstrated as a proof of concept the transfer printing of GaP as a versatile technique for GaP hetero-integration.

Topics
  • impedance spectroscopy
  • Silicon
  • susceptibility
  • Gallium
  • III-V semiconductor