People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mitchell, Arnan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2021Fringe analysis approach for imaging surface undulations on technical surfacescitations
- 2020Optical frequency comb generation using low stress CMOS compatible reactive sputtered silicon nitride waveguidescitations
- 2020Optical frequency comb generation using low stress reactive sputtered silicon nitride waveguides
- 2019CMOS-compatible, plasma beam assisted reactive magnetron sputtered silicon nitride films for photonic integrated circuits
- 2019Post processing dispersion trimming for on-chip mid-infrared supercontinuum generation
- 2019Low stress, anomalous dispersive silicon nitride waveguides fabricated by reactive sputtering
- 2019Low loss CMOS-compatible silicon nitride photonics utilizing reactive sputtered thin filmscitations
- 2017Liquid metal enabled microfluidicscitations
- 2017Compact Brillouin devices through hybrid integration on siliconcitations
- 2015Creation of Liquid Metal 3D Microstructures Using Dielectrophoresiscitations
- 2014Spectral and angular characteristics of dielectric resonator metasurface at optical frequenciescitations
- 2013Liquid metal marblescitations
- 2013Liquid metal marblescitations
- 2013Electrochemically induced actuation of liquid metal marblescitations
Places of action
Organizations | Location | People |
---|
document
Post processing dispersion trimming for on-chip mid-infrared supercontinuum generation
Abstract
<p>On-chip mid-infrared (3-20 μm) supercontinuum (SC) generation has potential applications in many different fields such as bio imaging, environmental sensors and security [1]. Recently, the wide transparency window from 3 to 15 μm and CMOS compatibility of germanium, along with the prediction of great nonlinear properties [2-3], have attracted a growing interest toward germanium-based platforms. In particular, silicon-germanium on silicon waveguides have been studied [4-9] and octave spanning SC generation up to 8.5 μm has been demonstrated in this platform [10]. The spectral properties and the coherence of the generated SC strongly depend on the waveguide's dispersion profile and a careful design of the group velocity dispersion is required. However, the actual dispersion of the waveguide produced by fabrication is often different from the target one, as it is sensitive to fabrication inaccuracies, surface contamination and the presence of defects. Post-process tuning mechanisms are therefore of great interest to adjust or correct a posteriori the waveguide dispersion to match the target value. Here, we experimentally show that it is possible to fine tune the dispersion profile a posteriori by adding a chalcogenide cladding layer on top of a highly nonlinear silicon-germanium on silicon waveguide, introducing a simple post processing tool to control the supercontinuum dynamics and its properties.</p>