People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Chaudhary, Sunny
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Space charge accumulation and DC breakdown strength of epoxy nanocomposites
- 2024Impact of particle thermal treatment on dielectric properties of core-shell filled epoxy nano-composites
- 2022Dynamic mechanical response in epoxy nanocomposites incorporating various nano-silica architectures
- 2022Dielectric response in epoxy nanocomposites incorporating various nano-silica architecturescitations
- 2022Molecular dynamics of epoxy nanocomposites filled with core–shell and hollow nanosilica architecturescitations
- 2021Assessment of the chemical and electrical properties of nano structured polyethylene with antioxidant-grafted nanosilica
- 2021Effect of nanoparticle volume and surface characteristics on the bulk properties of epoxy nanocompositecitations
- 2021Investigation of the functional network modifier loading on the stoichiometric ratio of epoxy resins and their dielectric propertiescitations
- 2021Effect of shell-thickness on the dielectric properties of TiO2/SiO2 core-shell nanoparticles filled epoxy nanocompositescitations
- 2020Effect of core-shell particles on the dielectric properties of epoxy nanocompositescitations
Places of action
Organizations | Location | People |
---|
conferencepaper
Effect of shell-thickness on the dielectric properties of TiO2/SiO2 core-shell nanoparticles filled epoxy nanocomposites
Abstract
The aim of this paper is to investigate the effect of shell thickness on the dielectric properties of epoxy nanocomposite systems and on the molecular dynamics. For this purpose, two core - shell nanoparticles were fabricated namely, TiO 2 /SiO 2 - 10 nm and TiO 2 /SiO 2 - 30 nm, where the number specifies the thickness of the shell. The nanoparticles were filled into the epoxy resin based on their specific surface area, where their total surface area was kept approximately equivalent in both the samples i.e ≃ 5.82 m 2 . To confirm the successful synthesis of both types of nanoparticles TEM images are presented. Further, these samples were characterized by dielectric spectroscopy (10 -1 - 10 5 Hz). Both the type of epoxy nanocomposites show higher real permittivity than unfilled epoxy system. TiO 2 /SiO 2 - 30 nm being higher between both. A reduction in the β relaxation peak is reported as the size of the nanoparticles increases. The relation of β relaxation with the degree of cross linking is also discussed. No significant changes are observed between both the nanocomposite types in terms of interfacial losses at lower frequencies (10 -1 - 1 Hz) even though the volume of nanoparticles in both samples is different. This is attributed to the fact that their surface interaction area, both between the core and shell as well as between the shell and the polymer, is approximately the same.