People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Virtanen, Suvi
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2019Understanding the cross-linking reactions in highly oxidized graphene/epoxy nanocomposite systemscitations
- 2016Dielectric breakdown strength and electrical conductivity of low density polyethylene octylnanosilica composite
- 2015Large-area dielectric breakdown performance of polymer films:Part II: Interdependence of filler content, processing and breakdown performance in polypropylene-silica nanocompositescitations
- 2015Bimodal dielectric nanoparticles and nanocomposites
- 2015Balanced nanocomposite thermosetting materials for HVDC and AC applications
- 2014Structure and dielectric breakdown strength of nano calcium carbonate/polypropylene compositescitations
- 2014Improved dielectric breakdown strength using bimodal functionalized silica nanoparticles
- 2014Dielectric breakdown strength of epoxy bimodal-polymer-brush-grafted core functionalized silica nanocompositescitations
- 2014Influence of low amounts of nanostructured silica and calcium carbonate fillers on the large-area dielectric breakdown performance of bi-axially oriented polypropylenecitations
- 2013Structural studies of dielectric polymer nanocomposites
- 2011Characterization of octamethylsilsesquioxane (CH3)8Si8O12 fillers in polypropene matrix
- 2010Dielectric properties and partial discharge endurance of polypropylene-silica nanocompositecitations
Places of action
Organizations | Location | People |
---|
document
Influence of low amounts of nanostructured silica and calcium carbonate fillers on the large-area dielectric breakdown performance of bi-axially oriented polypropylene
Abstract
Influence of low amounts (1.0-2.0wt-%) of nanostructured silica and calcium carbonate fillers on the largearea dielectric breakdown performance of bi-axially oriented polypropylene (BOPP) is analyzed. A multi-breakdown measurement method based on the self-healing breakdown capability of metallized film is utilized for the breakdown characterization in order to cover relatively large total film areas, thus leading to results of higher relevance from the practical point-of-view. The dispersion and distribution qualities of filler particles at the nanoscale are evaluated with transmission electron microscopy (TEM) imaging. Weibull statistical analysis suggests that the breakdown distribution homogeneity can be improved with both the filler types. The 1.0wt-% silica-BOPP composite also shows a shift of the weakest points towards higher dielectric strength in comparison to the neat BOPP. However,with increasing filler content, new failure modes are introduced into the nanocomposites, hence decreasing the overall breakdown performance in the >5% breakdown probability region in comparison to the un-filled reference BOPP film.