Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ocallaghan, John

  • Google
  • 7
  • 26
  • 61

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2020Development of an active high-density transverse intrafascicular micro-electrode probe19citations
  • 2019FITEP : a Flexible Implantable Thin Electronic Package platform for long term implantation applications, based on polymer and ceramic ALD multilayerscitations
  • 2019FITEP : a Flexible Implantable Thin Electronic Package platform for long term implantation applications, based on polymer and ceramic ALD multilayerscitations
  • 2019FITEP: a Flexible Implantable Thin Electronic Package platform for long term implantation applications, based on polymer and ceramic ALD multilayerscitations
  • 2017Ultra-thin biocompatible implantable chip for bidirectional communication with peripheral nerves21citations
  • 2017Ultra-thin biocompatible implantable chip for bidirectional communication with peripheral nerves21citations
  • 2012Biocompatible packaging solutions for implantable electronic systems for medical applicationscitations

Places of action

Chart of shared publication
Vandecasteele, Bjorn
6 / 10 shared
Maghari, Nima
6 / 6 shared
Verplancke, Rik
6 / 13 shared
Cuypers, Dieter
6 / 9 shared
Vanhaverbeke, Celine
4 / 5 shared
Ballini, Marco
6 / 6 shared
Cauwe, Maarten
6 / 13 shared
Patrick, Erin
6 / 6 shared
Braeken, Dries
6 / 7 shared
Goikoetxea, Erkuden
1 / 1 shared
Otto, Kevin
1 / 2 shared
Op De Beeck, Maaike
7 / 15 shared
Schaubroeck, David
6 / 16 shared
Kundu, Aritra
6 / 6 shared
Bashirullah, Rizwan
6 / 6 shared
Mader, Lothar
4 / 7 shared
Fahmy, Ahmed
5 / 5 shared
Andrei, Alexandru
5 / 6 shared
Firrincieli, Andrea
5 / 5 shared
De Baets, Johan
2 / 3 shared
Li, Changzheng
1 / 2 shared
Baets, Johan De
3 / 5 shared
Vanfleteren, Jan
1 / 24 shared
Qian, Karen
1 / 1 shared
Van Hoof, Chris
1 / 2 shared
Malachowski, Karl
1 / 1 shared
Chart of publication period
2020
2019
2017
2012

Co-Authors (by relevance)

  • Vandecasteele, Bjorn
  • Maghari, Nima
  • Verplancke, Rik
  • Cuypers, Dieter
  • Vanhaverbeke, Celine
  • Ballini, Marco
  • Cauwe, Maarten
  • Patrick, Erin
  • Braeken, Dries
  • Goikoetxea, Erkuden
  • Otto, Kevin
  • Op De Beeck, Maaike
  • Schaubroeck, David
  • Kundu, Aritra
  • Bashirullah, Rizwan
  • Mader, Lothar
  • Fahmy, Ahmed
  • Andrei, Alexandru
  • Firrincieli, Andrea
  • De Baets, Johan
  • Li, Changzheng
  • Baets, Johan De
  • Vanfleteren, Jan
  • Qian, Karen
  • Van Hoof, Chris
  • Malachowski, Karl
OrganizationsLocationPeople

document

Ultra-thin biocompatible implantable chip for bidirectional communication with peripheral nerves

  • Vandecasteele, Bjorn
  • Baets, Johan De
  • Maghari, Nima
  • Verplancke, Rik
  • Cuypers, Dieter
  • Ballini, Marco
  • Fahmy, Ahmed
  • Andrei, Alexandru
  • Cauwe, Maarten
  • Firrincieli, Andrea
  • Patrick, Erin
  • Braeken, Dries
  • Ocallaghan, John
  • Op De Beeck, Maaike
  • Schaubroeck, David
  • Kundu, Aritra
  • Bashirullah, Rizwan
Abstract

To realize optimal recording and stimulation of peripheral nerve cells, a CMOS chip is made with a multitude of electrodes which can be individually addressed in order to select after implantation the 16 best positioned electrodes. Since the Foreign Body Reaction should be minimal for optimum electrode-nerve contact, the CMOS chip is thinned down to 35um and fully packaged resulting in a 75um thin encapsulated chip. The chip is embedded in a biocompatible stack consisting of polymers and inorganic diffusion barriers deposited using atomic layer deposition (ALD). A biocompatible metallization is realized using gold and platinum sandwiched between polymers and ALD layers for flexible interconnects, and iridium oxide (IrOx) is selected as electrode material for optimal charge injection during stimulation. After this dedicated packaging based on the FITEP technology platform (Flexible Implantable Thin Electronic Package), the CMOS chip is still fully functional, which was tested dry (in air) as well as during submersion in saline. The form factor of the packaged chip is optimized for intra-fascicular implantation with minimum tissue damage. First acute in vivo stimulation tests proved that the stimulation capabilities of the IrOx electrodes are very good.

Topics
  • impedance spectroscopy
  • polymer
  • Platinum
  • gold
  • atomic layer deposition
  • Iridium