People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hashmi, Raheel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2020Robustness analysis of the polymer-conductive-mesh composite for the realization of transparent and flexible wearable antennascitations
- 2019A stripline-based planar wideband feed for high-gain antennas with partially reflecting superstructurecitations
- 2019All-dielectric compact superstrates for high-gain resonant-cavity antennas
- 2019Closely-spaced resonant cavity antennas for meeting ETSI class-2 specifications
- 2018Compact high-gain antenna with simple all-dielectric partially reflecting surfacecitations
- 2018Transverse permittivity gradient (TPG) superstrates or lenscitations
- 2017Achieving a large gain-bandwidth product from a compact antennacitations
- 2017Aperture field transformation in resonant cavity antennas by transverse permittivity gradient superstrates
- 2016A Class of Extremely Wideband Resonant Cavity Antennas with Large Directivity-Bandwidth Productscitations
- 2016Wideband gain enhancement of slot antenna using superstructure with optimised axial permittivity variationcitations
- 2016Preliminary results of an array of resonant cavity antennas at 60 GHzcitations
- 2016Distribution profiles for transverse permittivity gradient superstrates in extremely wideband resonant cavity antennascitations
- 2016A simple electromagnetic bandgap resonator antenna for 60 GHz wireless applicationscitations
- 2016A planar feeding technique for wideband, low-profile resonant cavity antennascitations
- 2016Performance evaluation of conventional and planar feeds in Resonant Cavity Antennas
- 2016Wideband single-feed highly directive resonant cavity antennas with all-dielectric superstructures
- 2015Recent advances in electromagnetic band gap resonator antennas
- 2015Composite defect-mode superstructures and wideband EBG resonator Antennas
- 2015Composite defect-mode superstructures and wideband EBG resonator Antennas
- 2014Achieving high directivity-bandwidth through flat GRIN superstrates in Fabry-Perot cavity antennascitations
Places of action
Organizations | Location | People |
---|
document
A planar feeding technique for wideband, low-profile resonant cavity antennas
Abstract
<p>A low profile, wideband resonant cavity antenna (RCA) is presented. It uses a simple and planar wideband feed antenna. The use of this planar, printed feed antenna reduces the overall height of the RCA. The RCA has a single-layer superstrate, which has radially non-uniform permittivity in the transverse plane. Excellent wideband matching was obtained for the RCA with a -10dB return loss bandwidth ranging from 20.81 to 25.32 GHz. Numerical results predict a peak boresight gain of 16.97 dBi. This RCA is well-suited for scalable RCA configurations such as sparse arrays or switched-polarization arrays with printed feed networks.</p>