People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Buttay, Cyril
Claude Bernard University Lyon 1
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2022Design of a test package for high voltage SiC diodes
- 2022Optical Detection of Partial Discharges Under Fast Rising Square Voltages in Dielectric Liquidscitations
- 2017Protruding Ceramic Substrates for High Voltage Packaging Of Wide Bandgap Semiconductorscitations
- 2017High temperature ageing of microelectronics assemblies with SAC solder jointscitations
- 2017Robustness of SiC MOSFET under avalanche conditionscitations
- 2016Sintered-Silver Bonding of High-Temperature Piezoelectric Ceramic Sensorscitations
- 2015Direct Copper Bonding for Power Interconnects: Design, Manufacturing, and Testcitations
- 2014Design and Manufacturing of a Double-Side Cooled, SiC based, High Temperature Inverter Leg
- 2013Study of die attach technologies for high temperature power electronics: Silver sintering and gold-germanium alloycitations
- 2013High Temperature Operation of SiC Converters
- 2013Full densification of molybdenum powders and multilayer materials obtained by Spark Plasma Sintering
- 2013Die attach using silver sintering. Practical implementation and analysiscitations
- 2012Full densification of Molybdenum powders using Spark Plasma Sinteringcitations
- 2012Elaboration of Architectured Materials by Spark Plasma Sinteringcitations
- 2012Sintered molybdenum for a metallized ceramic substrate packaging for the wide-bandgap devices and high temperature applicationscitations
- 20123-Dimensional, Solder-Free Interconnect Technology for high-Performance Power Modules
- 2011Die Attach of Power Devices Using Silver Sintering - Bonding Process Optimization and Characterization
- 2011Elaboration of Architectured Materials by Spark Plasma Sinteringcitations
- 2011Modeling, Fabrication, and Characterization of Planar Inductors on YIG Substratescitations
Places of action
Organizations | Location | People |
---|
document
Robustness of SiC MOSFET under avalanche conditions
Abstract
In high voltage direct current (HVDC) converters, a series connection of semiconductor devices is often used to achieve the desired blocking voltage. In such configuration, an unequal voltage sharing may drive one or more devices into avalanche breakdown, eventually causing the failure of the entire group of devices. This paper presents the experimental evaluation of SiC MOSFETs from different manufacturers operated in avalanche. A setup was developed to test the devices under such condition. The reliability of SiC MOSFETs have been compared. To correlate the experimental results with the failure mechanism, the MOSFETs were decapsulated to identify the failure sites on the SiC dies. Examination results show that for some tested devices, the failure occurs at the metallization source of the die, and results in a short circuit between all three terminals of the MOSFETs. Furthermore, it has been found that the parasitic BJT latch up and the intrinsic temperature limit are the main failure mechanisms for these devices.