Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Malik, H.

  • Google
  • 1
  • 5
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Deploying Patch-based Segmentation Pipeline for Fibroblast Cell Images at Varying Magnificationscitations

Places of action

Chart of shared publication
Idris, I. M.
1 / 1 shared
Toha, S. F.
1 / 1 shared
Idris, A. S.
1 / 1 shared
Daud, M. F.
1 / 1 shared
Tokhi, Mohammad Osman
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Idris, I. M.
  • Toha, S. F.
  • Idris, A. S.
  • Daud, M. F.
  • Tokhi, Mohammad Osman
OrganizationsLocationPeople

article

Deploying Patch-based Segmentation Pipeline for Fibroblast Cell Images at Varying Magnifications

  • Idris, I. M.
  • Toha, S. F.
  • Idris, A. S.
  • Malik, H.
  • Daud, M. F.
  • Tokhi, Mohammad Osman
Abstract

Cell culture monitoring necessitates thorough attention for the continuous characterization of cultivated cells. Machine learning has recently emerged to engage in a process, such as a microscopy segmentation task; however, the trained data may not be comprehensive for other datasets. Most algorithms do not encompass a wide range of data attributes and require distinct system workflows. Thus, the main objective of the research is to propose a segmentation pipeline specifically for fibroblast cell images on phase contrast microscopy at different magnifications and to achieve reliable predictions during deployment. The research employs patch-based segmentation for predictions, with U-Net as the baseline architecture. The proposed segmentation pipeline demonstrated significant performance for the UNet-based network, achieving an IoU score above 0.7 for multiple magnifications, and provided predictions for cell confluency value with less than 3% error. The study also found that the proposed model could segment the fibroblast cells in under 10 seconds with the help of OpenVINO and Intel Compute Stick 2 on Raspberry Pi, with its optimal precision limited to approximately 80% cell confluency which is sufficient for real-world deployment as the cell culture is typically ready for passaging at the threshold.

Topics
  • impedance spectroscopy
  • phase
  • laser emission spectroscopy
  • machine learning
  • microscopy