Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Janabi, Ahmed

  • Google
  • 1
  • 2
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Overhead Reduction Technique for Software-Defined Network based Intrusion Detection Systems17citations

Places of action

Chart of shared publication
Kanakis, Triantafyllos
1 / 1 shared
Johnson, Mark
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Kanakis, Triantafyllos
  • Johnson, Mark
OrganizationsLocationPeople

article

Overhead Reduction Technique for Software-Defined Network based Intrusion Detection Systems

  • Kanakis, Triantafyllos
  • Johnson, Mark
  • Janabi, Ahmed
Abstract

In Software-Defined Networks, the Intrusion Detection System is receiving growing attention, due to the expansion of the internet and cloud storage. This system is vital for institutions that use cloud services and have many users. Although the Intrusion Detection System offers several security features, its performance is lagging behind in large enterprise’s networks. Existing approaches are based on centralised processing and use many features to implement a protection system. Therefore, system overload and poor performance occur at the controller and OpenFlow switches. As a result, the current solutions create issues that must be considered, especially when they are implemented on large networks. Furthermore, enhancements in security applications improve the reliability of networks. Following a literature review of the existing Intrusion Detection Systems, this paper presents a new model that offers decentralised processing and exchanges data over a trusted, independent channel, in order to solve issues relating to system overload and poor performance. Our model utilises an appropriate feature selection method to reduce the number of extracted features and minimise the data transmitted over the channels. Additionally, the Naive Bayes algorithm has been employed for flow classification purposes, since it is a fast classifier. We successfully implemented our framework, using the Mininet emulator, which provides a suitable networking environment. Evaluations indicate that our proposed system can detect various attacks with an accuracy of 98.46% and nominal decreasing rates of 1.5% in throughput and 0.7% in latency analyses, when the model is implemented in wide range networks.

Topics
  • impedance spectroscopy