People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Saarimaki, Eetta
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Screening of suitable random copolymer polypropylene blends for HVDC cable insulationcitations
- 2023Molecular Layer Deposition of Polyurea on Silica Nanoparticles and Its Application in Dielectric Nanocompositescitations
- 2023Nano-scale nonwoven fabrics by electrospinning of polylactic acid
- 2021Dielectric performance of silica-filled nanocomposites based on miscible (PP/PP-HI) and immiscible (PP/EOC) polymer blendscitations
- 2021Dielectric Performance of Silica-Filled Nanocomposites Based on Miscible (PP/PP-HI) and Immiscible (PP/EOC) Polymer Blendscitations
- 2021Combining good dispersion with tailored charge trapping in nanodielectrics by hybrid functionalization of silicacitations
- 2021Deposition of Ureido and Methacrylate Functionalities onto Silica Nanoparticles and Its Effect on the Properties of Polypropylene-Based Nanodielectricscitations
- 2021PP/PP-HI/silica nanocomposites for HVDC cable insulationcitations
- 2020Silica surface modification with liquid rubbers & functional groups for new polyolefin-based dielectric nano-composites
- 2020Influence of polar and unpolar silica functionalization on the dielectric properties of PP/POE nanocompositescitations
- 2020Feasibility of Mini-Scale Injection Molding for Resource-Efficient Screening of PP-Based Cable Insulation Nanocompositescitations
- 2020Silica Functionalization: How Does it Affect Space Charge Accumulation in Nanodielectrics Under DC?
- 2020From Laboratory to Industrial Scalecitations
- 2019Silica-Polypropylene Nanocomposites for Film Capacitorscitations
- 2018Airborne Dust from Mechanically Recycled Cotton during Ring Spinning
- 2015Novel thermographic inspection method to detect the moisture in early stage of the water ingress and a procedure to remove the moisture from the composite structure
- 2013New high-quality mined nanomaterials mass produced for plastic and wood-plastic nanocomposites
- 2013PVC-wood composite
- 2009Development of thermographic inspection routine exploiting phase transition of water for moisture detection in aircraft structurescitations
- 2006Novel heat durable electromechanical filmcitations
- 2005Novel heat durable electromechanical filmscitations
- 2005Novel heat durable electromechanical film processingcitations
Places of action
Organizations | Location | People |
---|
article
Deposition of Ureido and Methacrylate Functionalities onto Silica Nanoparticles and Its Effect on the Properties of Polypropylene-Based Nanodielectrics
Abstract
<p>Surface modification of nanoparticles is often utilized to tailor the interfacial properties in dielectric nanocomposites. Introducing different functional groups to the nanoparticles' surface may induce localized states (traps) that can enhance the dielectric performance of the material depending on their density and energy levels. Furthermore, surface modification of the filler can affect the dispersion quality and crystallization of the nanocomposites which can ultimately alter the dielectric response of the material. In this study, functionalization of silica nanoparticles is demonstrated using 3-(trimethoxysilyl)propyl methacrylate (TMPM) and 1-[3-(trimethoxysilyl)propyl]urea (TMPU) as modifying agents. The effect of such modifications on the crystallization behavior, dispersion quality of the nanoparticles, as well as charge trapping and transport under a medium DC field is studied in nanocomposites based on polypropylene (PP)/ethylene-octene-copolymer (EOC) blends at 1% and 5% of filler concentrations. The results show that both ureido and methacrylate functional groups introduce localized states, but with different energy levels. Nitrogen containing ureido groups in TMPU tend to introduce deeper traps to the filler-polymer interfaces, compared to the methacrylate silane modification. Comparing the two types of surface functionalization, the ureido-functionalized silica resulted in a suppression of space charge formation at the interfaces under a medium DC electric field, despite the relatively larger mean cluster size of nanoparticles.</p>