People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Li, Yi
University of Manchester
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (32/32 displayed)
- 2024Effect of Graphene Oxide and Carbon Black on the Thermoelectric Performance of Niobium doped Strontium Titanatecitations
- 2024Effect of graphene oxide and carbon black on the thermoelectric performance of niobium doped strontium titanatecitations
- 2024Synthesis and characterization of UV organic light-emitting electrochemical cells (OLECs) using phenanthrene fluorene derivatives for flexible applicationscitations
- 2024Synthesis and characterization of UV organic light-emitting electrochemical cells (OLECs) using phenanthrene fluorene derivatives for flexible applicationscitations
- 2024Dataset in support of the article 'Synthesis and characterization of UV light-emitting electrochemical cells using phenanthrene fluorene derivatives for flexible applications'
- 2023High critical current STAR ® wires with REBCO tapes by advanced MOCVDcitations
- 2023Challenges in electrical detection of spin-orbit torque in Ir20Mn80/Pt hetero-structurescitations
- 2022Dataset supporting the publication "Printable Bifluorene based Ultra-Violet (UV) Organic Light-Emitting Electrochemical Cells (OLECs) with Improved Device Performance".
- 2022Solution-processed organic light-emitting electrochemical cells (OLECs) with blue colour emission via silver-nanowires (AgNWs) as Cathode
- 2022Printable bifluorene based ultra-violet (UV) organic light-emitting electrochemical cells (OLECs) with improved device performancecitations
- 2021Spray-coated organic light emitting electrochemical cells realized on a standard woven polyester cotton textilecitations
- 2021Spray-coated organic light emitting electrochemical cells realized on a standard woven polyester cotton textilecitations
- 2020Screen printed flexible water activated battery on woven cotton textile as a power supply for e-textile applicationscitations
- 2020Aramid nanofiber and modified ZIF-8 constructed porous nanocomposite membrane for organic solvent nanofiltrationcitations
- 2020A review on advanced smart material based nano sensors for viral detections
- 2020Template Dissolution Interfacial Patterning of Single Colloids for Nanoelectrochemistry and Nanosensingcitations
- 2020Advanced smart material based nano sensors for viral detections
- 2020Spray coated light emitting electrochemical cells on standard polyester cotton woven textiles
- 2019Simultaneous Optical and Electrical Spin-Torque Magnetometry with Phase-sensitive Detection of Spin Precessioncitations
- 2019Encapsulated textile organic solar cells fabricated by spray coatingcitations
- 2018Monitoring plasmonic hot-carrier chemical reactions at the single particle levelcitations
- 2018Investigation of low temperature processed titanium dioxide (TiO2) films for printed dye sensitized solar cells (DSSCs) for large area flexible applicationscitations
- 2018Screen printed dye-sensitized solar cells (DSSCs) on woven polyester cotton fabric for wearable energy harvesting applicationscitations
- 2018Hemocyanin facilitates lignocellulose digestion by wood-boring marine crustaceanscitations
- 2018Optimised process of fully spray-coated organic solar cells on woven polyester cotton fabricscitations
- 2018Energy-harvesting materials for smart fabrics and textilescitations
- 2018Solution processed organic solar cells on textilescitations
- 2018Data for 'Encapsulated Textile Organic Solar Cells Fabricated by Spray Coating'
- 2016Fully spray-coated organic solar cells on woven polyester cotton fabrics for wearable energy harvesting applicationscitations
- 2016Dataset for Fully spray-coated organic solar cells on woven polyester cotton fabric for wearable energy harvesting applications
- 2015A 2.45 GHz rectenna screen-printed on polycotton for on-body RF power transfer and harvestingcitations
- 2008Meson exchange currents in neutron-proton bremsstrahlungcitations
Places of action
Organizations | Location | People |
---|
article
Screen printed flexible water activated battery on woven cotton textile as a power supply for e-textile applications
Abstract
Electronic textiles (e-textiles) development has been attracting significant research interest over the past two decades, especially in the field of wearable electronics. Fabric based flexible batteries are an attractive solution to the challenge of powering e-textiles. This work presents a simple and scalable textile primary battery, produced via a low-cost screen-printing manufacturing process. The device architecture is purposefully simple, based on a standard aluminum-silver redox reaction and a salt bridge. The battery as manufactured is inactive and requires the addition of water to be activated, and it can therefore be classified as a reserve battery. The battery is suitable for long-term storage, having negligible self-discharge rates. Initial batteries achieved a total area capacity of 101.6Ah/cm2 and an energy density of 2.178 mWh/cm3 above 0.8 V. Further refinements of the battery include the inclusion of a novel membrane separator within the woven cotton textile layer and blending the metal salts with polyvinyl alcohol to reduce the number of textile layers. This optimization resulted in an improved performance of 166.8Ah/cm2 in area capacity and 3.686 mWh/cm3 in energy density above 0.8 V. This work has demonstrated the feasibility of an aluminum-silver reserve textile battery and demonstrates a novel method for printing a phase inversion membrane separator into the textile. Following an encapsulation process, this flexible textile battery can be easily integrated into a standard woven textile, providing a robust, lightweight and flexible power supply.