Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Couples, Gary Douglas

  • Google
  • 3
  • 8
  • 14

Heriot-Watt University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2018Analysis of Sandstone Pore Space Fluid Saturation and Mineralogy Variation via Application of Monostatic K-Band Frequency Modulated Continuous Wave Radar14citations
  • 2017Analysis of geomaterials using frequency-modulated continuous wave radar in the K-bandcitations
  • 2016Fracture network evolution in laminitescitations

Places of action

Chart of shared publication
Lewis, Helen
3 / 4 shared
Tilford, Timothy
1 / 1 shared
Blanche, Jamie
2 / 3 shared
Buckman, Jim
1 / 15 shared
Flynn, David
2 / 25 shared
Bailey, Chris
1 / 8 shared
Cheung, Rebecca
1 / 1 shared
Zihms, Stephanie
1 / 2 shared
Chart of publication period
2018
2017
2016

Co-Authors (by relevance)

  • Lewis, Helen
  • Tilford, Timothy
  • Blanche, Jamie
  • Buckman, Jim
  • Flynn, David
  • Bailey, Chris
  • Cheung, Rebecca
  • Zihms, Stephanie
OrganizationsLocationPeople

article

Analysis of Sandstone Pore Space Fluid Saturation and Mineralogy Variation via Application of Monostatic K-Band Frequency Modulated Continuous Wave Radar

  • Lewis, Helen
  • Tilford, Timothy
  • Blanche, Jamie
  • Buckman, Jim
  • Flynn, David
  • Couples, Gary Douglas
  • Bailey, Chris
Abstract

<p>In this paper we present the preliminary findings from a world first investigation into monostatic frequency modulated continuous wave (FMCW) radar analysis of porous sandstones and their fluid content. FMCW results, within 24 to 25.5 GHz, provide insights into the rock/pore system as well as into mineral and liquid distributions, both crucial for quantitative representation of the fluid-rock system for subsequent assessment of the sandstones. Sandstone samples, here characterised using known techniques of energy dispersive x-ray analysis (EDX), gaseous secondary electron (GSE) and backscattered electron (BSE) imaging are: Darney, Lazonby, Locharbriggs and Red St. Bees sandstones, with FMCW results showing that, in the K-Band, calculated values for relative permittivity, utilising free-space radiation reflection data, give results that are consistent with, and have the potential to predict, the known rock elemental constituents, where each sandstone has different distributions of the dominant quartz and subsidiary other minerals and of grain size and shape distributions. The experimental results support the sensitivity of this sensing modality to variances in rock properties in typical sandstones with complex relative permittivity, ε*r, values for room-dry sandstones ranging from 5.76 to 6.76 and from 12.96 to 48.3 for partially saturated sandstones, with the highest values indicating high relative permittivity mineral inclusion and/or grain angularity. FMCW provides similar results, over slightly larger volumes, to those produced by the current resource-intensive methodologies, but much more easily and cheaply.</p>

Topics
  • porous
  • pore
  • mineral
  • grain
  • inclusion
  • grain size
  • dielectric constant
  • Energy-dispersive X-ray spectroscopy