People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gardeniers, Han
University of Twente
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2024Alternative nano-lithographic tools for shell-isolated nanoparticle enhanced Raman spectroscopy substrates
- 2024Alternative nano-lithographic tools for shell-isolated nanoparticle enhanced Raman spectroscopy substratescitations
- 2023Fabrication of homogeneous shell-isolated sers substrates for catalytic applications
- 20233D‐Architected Alkaline‐Earth Perovskitescitations
- 2022Fabrication of microstructures in the bulk and on the surface of sapphire by anisotropic selective wet etching of laser-affected volumescitations
- 2022Additive Manufacturing of 3D Luminescent ZrO2:Eu3+ Architecturescitations
- 2022Vacuum-driven assembly of electrostatically levitated microspheres on perforated surfacescitations
- 2020Massive Parallel NEMS Flow Restriction Fabricated Using Self-Aligned 3D-Crystallographic Nanolithographycitations
- 2020Fabrication of millimeter-long structures in sapphire using femtosecond infrared laser pulses and selective etchingcitations
- 2020Spatial Segregation of Microspheres by Rubbing-Induced Triboelectrification on Patterned Surfacescitations
- 2018Three-dimensional fractal geometry for gas permeation in microchannelscitations
- 2018Morphology of single picosecond pulse subsurface laser-induced modifications of sapphire and subsequent selective etchingcitations
- 2012Production and characterization of micro- and nano-features in biomedical alumina and zirconia ceramics using a tape casting routecitations
- 2008On the resilience of PDMS microchannels after violent optical breakdown microbubble cavitation
- 2007Integrated electrochemical sensor array for on-line monitoring of yeast fermentationscitations
- 2007Spreading of thin-film metal patterns deposited on nonplanar surfaces using a shadow mask micromachined in si (110)citations
- 2006Fabrication of microfluidic networks with integrated electrodescitations
- 2006Monitoring of yeast cell concentration using a micromachnined impedance sensorcitations
- 2005Monitoring of yeast cell concentration using a micromachined impedance sensor
- 2003A low hydraulic capacitance pressure sensor for integration with a micro viscosity detectorcitations
- 2002Fabrication and characterization of MEMS based wafer-scale palladium-silver alloy membranes for hydrogen separation and hydrogenation/dehydrogenation reactionscitations
- 2002Integrated Micro- and Nanofluidics: Silicon Revisitedcitations
- 2002Micromachined Palladium - Silver Alloy Membranes for Hydrogen Separation
- 2001Local anodic bonding of Kovar to Pyrex aimed at high-pressure, solvent-resistant microfluidic connectionscitations
- 2001Failure mechanisms of pressurized microchannels, model, and experimentscitations
- 2000Failure mechanisms of pressurized microchannels, model and experiments
Places of action
Organizations | Location | People |
---|
article
Failure mechanisms of pressurized microchannels, model, and experiments
Abstract
MicrochanneIs were created by fusion bonding of a Pyrex cover to a thermally oxidized silicon wafer, which contained anisotropically etched grooves. Such channels are frequently used in microfluidic handling systems, for example, in chemical analysis. Since in some of these labs-on-a-chip, in particular those used in liquid chromatography, the channels are subjected to high pressures of up to a few hundred bar, it is important to have information about the mechanical stability of the channel chip, in particular of the wafer bond involved in it. The latter is the subject of this paper. The maximum pressure that can be applied to several different channel chips was investigated experimentally. In order to find the relation among this maximum pressure, channel geometry, materials elasticity, and bond energy, an energy model was developed that is generally applicable to all types of wafer bonds. It was shown that the model is substantiated by the experimental pressure data, from which it could be calculated that the effective bond energy increased from 0.018 to 0.19 J/m2 for an annealing temperature ranging from 310 to 470°C