Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Troeger, Ralph T.

  • Google
  • 1
  • 8
  • 50

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2000Current-voltage characteristics of high current density silicon Esaki diodes grown by molecular beam epitaxy and the influence of thermal annealing50citations

Places of action

Chart of shared publication
Seabaugh, Alan C.
1 / 1 shared
Guedj, C.
1 / 3 shared
Kolodzey, James
1 / 1 shared
Adam, Thomas N.
1 / 1 shared
Rommel, Scan L.
1 / 1 shared
Dashiell, Michael W.
1 / 1 shared
Lake, R.
1 / 2 shared
Berger, Paul R.
1 / 16 shared
Chart of publication period
2000

Co-Authors (by relevance)

  • Seabaugh, Alan C.
  • Guedj, C.
  • Kolodzey, James
  • Adam, Thomas N.
  • Rommel, Scan L.
  • Dashiell, Michael W.
  • Lake, R.
  • Berger, Paul R.
OrganizationsLocationPeople

article

Current-voltage characteristics of high current density silicon Esaki diodes grown by molecular beam epitaxy and the influence of thermal annealing

  • Seabaugh, Alan C.
  • Guedj, C.
  • Kolodzey, James
  • Adam, Thomas N.
  • Troeger, Ralph T.
  • Rommel, Scan L.
  • Dashiell, Michael W.
  • Lake, R.
  • Berger, Paul R.
Abstract

<p>We present the characteristics of uniformly doped silicon Esaki tunnel diodes grown by low temperature molecular beam epitaxy (T<sub>growth</sub> = 275°C) using in situ boron and phosphorus doping. The effects of ex situ thermal annealing are presented for temperatures between 640 and 800°C. A maximum peak to valley current ratio (PVCR) of 1.47 was obtained at the optimum annealing temperature of 680°C for 1 min. Peak and valley (excess) currents decreased more than two orders of magnitude as annealing temperatures and times were increased with rates empirically determined to have thermal activation energies of 2.2 and 2.4 eV respectively. The decrease in current density is attributed to widening of the tunneling barrier due to the diffusion of phosphorus and boron. A peak current density of 47 kA/cm<sup>2</sup> (PVCR = 1.3) was achieved and is the highest reported current density for a Si-based Esaki diode (grown by either epitaxy or by alloying). The temperature dependence of the current voltage characteristics of a Si Esaki diode in the range from 4.2 to 325 K indicated that both the peak current and the excess current are dominated by quantum mechanical tunneling rather than by recombination. The temperature dependence of the peak and valley currents is due to the band gap dependence of the tunneling probability.</p>

Topics
  • density
  • impedance spectroscopy
  • Silicon
  • Boron
  • annealing
  • activation
  • current density
  • Phosphorus