Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Prashanthi, B.

  • Google
  • 1
  • 2
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022A multi-criteria decision making method for vapor smoothening fused deposition modelling part8citations

Places of action

Chart of shared publication
Sugavaneswaran, M.
1 / 2 shared
John Rajan, A.
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Sugavaneswaran, M.
  • John Rajan, A.
OrganizationsLocationPeople

article

A multi-criteria decision making method for vapor smoothening fused deposition modelling part

  • Sugavaneswaran, M.
  • Prashanthi, B.
  • John Rajan, A.
Abstract

<jats:sec> <jats:title content-type="abstract-subheading">Purpose</jats:title> <jats:p>This paper aims to enhance the surface finish of the fused deposition modeling (FDM) part using the vapor smoothening (VS) post-processing method and to study the combined effect of FDM and VS process parameters on the quality of the part.</jats:p> </jats:sec> <jats:sec> <jats:title content-type="abstract-subheading">Design/methodology/approach</jats:title> <jats:p>Analysis of variance method is used to understand the significance of the FDM and VS process parameters. Following this, the optimized parameter for multiple criteria response is reported using the technique for order preference by similarity to ideal solution. The process parameters alternatives are build orientation angle, build surface normal and exposure time and the criteria are surface roughness and dimensional error percentage.</jats:p> </jats:sec> <jats:sec> <jats:title content-type="abstract-subheading">Findings</jats:title> <jats:p>The result observed contradicts the result reported on the independent parameter optimization of FDM and VS processes. There is a radical improvement in the surface finish on account of the coating process and an increase in the exposure time results in the decrease of the surface roughness. Minimum surface roughness of 0.11 <jats:italic>µ</jats:italic>m is observed at 1,620 build angle and the least dimensional error of 0.01% is observed at build orientation angle 540. The impact of VS on the up-facing surface is different from the down-facing surface due to the removal of support material burrs and the exposure of the surface to vapor direction.</jats:p> </jats:sec> <jats:sec> <jats:title content-type="abstract-subheading">Originality/value</jats:title> <jats:p>A study on the multi-criteria decision-making to ascertain the effect of post-processing on FDM component surface normal directed both to downward (build angle 0<jats:bold>°</jats:bold>–90<jats:bold>°</jats:bold>) and to upward (build angle 99<jats:bold>°</jats:bold>–180<jats:bold>°</jats:bold>) are reported for the first time in this article. The data reported for the post-processed FDM part at the build angle 0<jats:bold>°</jats:bold>–180<jats:bold>°</jats:bold> can be used as a guideline for selecting the optimal parameter and for assigning appropriate tolerance in the CAD model.</jats:p> </jats:sec>

Topics
  • Deposition
  • impedance spectroscopy
  • surface
  • size-exclusion chromatography
  • collision-induced dissociation