Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Singh, Neetu

  • Google
  • 1
  • 3
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Effect of heparin drug loading on biodegradable polycaprolactone–iron pentacarbonyl powder blend stents fabricated by solvent cast 3D printing10citations

Places of action

Chart of shared publication
Pandey, Pulak Mohan
1 / 2 shared
Singh, Jasvinder
1 / 1 shared
Kaur, Tejinder
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Pandey, Pulak Mohan
  • Singh, Jasvinder
  • Kaur, Tejinder
OrganizationsLocationPeople

article

Effect of heparin drug loading on biodegradable polycaprolactone–iron pentacarbonyl powder blend stents fabricated by solvent cast 3D printing

  • Pandey, Pulak Mohan
  • Singh, Jasvinder
  • Kaur, Tejinder
  • Singh, Neetu
Abstract

<jats:sec> <jats:title content-type="abstract-subheading">Purpose</jats:title> <jats:p>The purpose of this paper is to fabricate pre-existing geometries of the stents using solvent cast 3D printing (SC3P) and encapsulation of each stent with heparin drug by using aminolysis reaction.</jats:p> </jats:sec> <jats:sec> <jats:title content-type="abstract-subheading">Design/methodology/approach</jats:title> <jats:p>The iron pentacarbonyl powder and poly-ɛ-caprolactone blend (PCIP) were used to print stent designs of Art18z, Palmaz-Schatz and Abbott Bvs1.1. The properties of antithrombosis, anticoagulation and blood compatibility were introduced in the stents by conjugation of heparin drug via the aminolysis process. The aminolysis process was confirmed by energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy due to presence of amide group and nitrogen peak in the respective analysis. Biological studies were performed to depict the cell viability, hemocompatibility and antithrombotic properties. Besides, mechanical behaviors were analyzed to study the behavior of the stents under radial compression load and bending load.</jats:p> </jats:sec> <jats:sec> <jats:title content-type="abstract-subheading">Findings</jats:title> <jats:p>The amount of heparin immobilized on the Art18z, Palmaz-Schatz and Abbott Bvs1.1 stents were 255 ± 27, 222 ± 30 and 212 ± 13 µg, respectively. The cell viability studies using L929 fibroblast cells confirmed the cytocompatibility of the stents. The heparinized SC3P printed stents displayed excellent thrombo-resistance, anticoagulation properties and hemocompatibility as confirmed by blood coagulation analysis, platelet adhesion test and hemolysis analysis. Besides, mechanical behavior was found in context of the real-life stents. All these assessments confirmed that the developed stents have the potential to be used in the real environment of coronary arteries.</jats:p> </jats:sec> <jats:sec> <jats:title content-type="abstract-subheading">Originality/value</jats:title> <jats:p>Various customized shaped biodegradable stents were fabricated using 3D printing technique and encapsulated with heparin drug using aminolysis process.</jats:p> </jats:sec>

Topics
  • impedance spectroscopy
  • Nitrogen
  • iron
  • size-exclusion chromatography
  • Fourier transform infrared spectroscopy
  • X-ray spectroscopy