Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wasley, Thomas

  • Google
  • 1
  • 9
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Micro Electronic Systems via Multifunctional Additive Manufacturing3citations

Places of action

Chart of shared publication
Smith, Patrick J.
1 / 3 shared
Connaughton, Colm
1 / 2 shared
Kay, Robert
1 / 3 shared
Esenturk, Emre
1 / 2 shared
Stringer, Jonathan
1 / 6 shared
Shephard, Jonathan D.
1 / 25 shared
Li, Ji
1 / 3 shared
Harris, Russell
1 / 3 shared
Duong, Ta
1 / 1 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Smith, Patrick J.
  • Connaughton, Colm
  • Kay, Robert
  • Esenturk, Emre
  • Stringer, Jonathan
  • Shephard, Jonathan D.
  • Li, Ji
  • Harris, Russell
  • Duong, Ta
OrganizationsLocationPeople

article

Micro Electronic Systems via Multifunctional Additive Manufacturing

  • Smith, Patrick J.
  • Connaughton, Colm
  • Kay, Robert
  • Esenturk, Emre
  • Stringer, Jonathan
  • Shephard, Jonathan D.
  • Wasley, Thomas
  • Li, Ji
  • Harris, Russell
  • Duong, Ta
Abstract

<br/>Purpose<br/>This paper aims to demonstrate the improved functionality of additive manufacturing technology provided by combining multiple processes for the fabrication of packaged electronics.<br/><br/>Design/methodology/approach<br/>This research is focused on the improvement in resolution of conductor deposition methods through experimentation with build parameters. Material dispensing with two different low temperature curing isotropic conductive adhesive materials was characterised for their application in printing each of three different conductor designs, traces, z-axis connections and fine pitch flip chip interconnects. Once optimised, demonstrator size can be minimised within the limitations of the chosen processes and materials.<br/><br/>Findings<br/>The proposed method of printing z-axis through layer connections was successful with pillars 2 mm in height and 550 µm in width produced. Dispensing characterisation also resulted in tracks 134 µm in width and 38 µm in height allowing surface mount assembly of 0603 components and thin-shrink small outline packaged integrated circuits. Small 149-µm flip chip interconnects deposited at a 457-µm pitch have also been used for packaging silicon bare die.<br/><br/>Originality/value<br/>This paper presents an improved multifunctional additive manufacturing method to produce fully packaged multilayer electronic systems. It discusses the development of new 3D printed, through layer z-axis connections and the use of a single electrically conductive adhesive material to produce all conductors. This facilitates the surface mount assembly of components directly onto these conductors before stereolithography is used to fully package multiple layers of circuitry in a photopolymer.

Topics
  • Deposition
  • impedance spectroscopy
  • surface
  • Silicon
  • isotropic
  • additive manufacturing
  • curing