People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lipinsky, Dieter
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
ToF-SIMS analysis of boundary layers formed under zinc-free antiwear
Abstract
<p>Purpose: The structure and chemical composition of boundary layers built under tribological stress affect the friction and wear of solid-state surfaces in a major way. Therefore, information about the chemical composition of the outermost surface and boundary layer are of great importance. Preliminary time of flight secondary ion mass spectrometry (ToF-SIMS) investigations have shown that metal surfaces that have been immersed at high temperatures in phosphonium phosphate-containing oils contain at least some characteristic signals for phosphate containing anti-wear layers. The purpose of this work is to investigate the influence of additive concentration and oil temperature on the formation of phosphate containing layers. Design/methodology/approach: To investigate the formation of phosphate containing layers as a function of temperature, samples of rolling bearing steel 100Cr6 were first heated in a furnace to selected temperatures of 200, 300, 400 and 500 °C, respectively. Then, they were immersed in a model fluid containing ionic liquids as additive in PAO-2 and analysed by ToF-SIMS. Findings: 100Cr6 surfaces immersed in trihexyltetradecylphosphonium bis(2-ethylhexyl)phosphate additive oil show characteristic signals of phosphate-like layers at temperatures of 400-500 °C. In addition, characteristic surface signals show a decrease in these ionic liquids at these temperatures. Originality/value: Ionic liquids could be an alternative to zinc dialkyldithiophosphates as an oil additive. Targeted investigations under friction load could provide information on whether wear-reducing layers are formed. Peer review: The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-10-2019-0436</p>